Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study

被引:0
|
作者
机构
[1] Guzman, David M.
[2] Strachan, Alejandro
来源
Strachan, A. (strachan@purdue.edu) | 1600年 / American Institute of Physics Inc.卷 / 115期
关键词
We characterize the electronic structure and elasticity of monolayer transition-metal dichalcogenides MX2 (M = Mo; W; Sn; Hf and X = S; Se; Te) based on 2H and 1T structures using fully relativistic first principles calculations based on density functional theory. We focus on the role of strain on the band structure and band alignment across the series of materials. We find that strain has a significant effect on the band gap; a biaxial strain of 1% decreases the band gap in the 2H structures; by as a much as 0.2 eV in MoS 2 and WS2; while increasing it for the 1T cases. These results indicate that strain is a powerful avenue to modulate their properties; for example; strain enables the formation of; otherwise impossible; broken gap heterostructures within the 2H class. These calculations provide insight and quantitative information for the rational development of heterostructures based on this class of materials accounting for the effect of strain. © 2014 AIP Publishing LLC;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条