Computational vascular fluid dynamics: Problems, models and methods

被引:339
作者
Quarteroni, Alfio [1 ,2 ]
Tuveri, Massimiliano [3 ,4 ]
Veneziani, Alessandro [5 ]
机构
[1] Dipartimento di Matematica 'F. Brioschi', Politecnico di Milano, I-20133 Milano
[2] Départément de Mathématiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne
[3] Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4), I-09123 Cagliari
[4] Clinica 'S.Elena', Quartu S'Elena, I-09123 Cagliari
[5] Dipartimento Scientifico e Tecnologico, Università Degli Studi di Verona Ca' Vignal 2, I-37134 Verona, Strada Le Grazie
基金
瑞士国家科学基金会;
关键词
D O I
10.1007/s007910050039
中图分类号
学科分类号
摘要
Some of the problems, models, and methods associated with computational vascular fluid dynamics are discussed. Some of the issues addressed include definition of suitable mathematical models, preprocessing of clinical data, and development of appropriate numerical techniques. A preliminary analysis aiming at introducing suitable simplifying assumptions in the mathematical modeling process is mandatory due to the complexity of the cardiovascular system. The suitable treatment of clinical data is crucial for the definition of a real geometrical model, which is of utmost importance for the meaningfulness of numerical results. This aspect demands geometrical reconstruction algorithms to achieve simulation in real vascular morphologies.
引用
收藏
页码:163 / 197
页数:34
相关论文
共 130 条
  • [1] Abdoulaev G., Cadeddu S., Delussu G., Donizelli M., Manzi C., Formaggia L., Giachetti A., Gobbetti E., Leone A., Pili P., Schenine A., Tuveri M., Varone A., Veneziani A., Zanetti G., Viva Z.A., The virtual vascular project, IEEE Transactions on Information Technology in Medicine, 4, 2, pp. 268-274, (1998)
  • [2] Aris R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, (1969)
  • [3] Barbera M.L., Optimality in fluid transport systems, Contemp. Math., 141, pp. 565-586, (1993)
  • [4] Begue C., Conca C., Murat F., Pironneau O., Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, Nonlinear Partial Differential Equations and Their Applications, pp. 179-264, (1988)
  • [5] Brezzi F., Fortin M., Mixed and Hybrid Finite Elements, (1991)
  • [6] Bauters C., Meurice T., Hamon M., McFadden E., Lablanche J., Bertrand M., Mechanisms and prevention of restenosis: From experimantal models to clinical practice, Cardiovascular Research, 31, pp. 835-846, (1996)
  • [7] Bercovier M., Pironneau O., Error estimates for finite element solution of the stokes problem in the primitive variables, Num. Math., 33, pp. 211-236, (1979)
  • [8] Bassiouny H., White S., Glagov S., Choi E., Giddens D., Zarins C., Anastomotic intimal hyperplasia: Mechanical injury or flow-induced, J. Vasc. Surg., 15, pp. 708-717, (1992)
  • [9] Bank A., Wang H., Holte J., Mullen K., Shammas R., Kubo S., Contribution of collagen, elastin and smooth muscle to in vivo human brachial artery wall stress and elastic modulus, Circulation, 94, pp. 3263-3270, (1996)
  • [10] Bank A., Wilson R., Kubo S., Holte J., Dresing T., Wang H., Directs effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties, Circ. Res., 77, pp. 1008-1016, (1985)