Void fraction and flow patterns of gas liquid two-phase flow in a microchannel

被引:0
|
作者
Department of Mechanical Engineering, Kagoshima University, 1-21-40 Koorimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan [1 ]
机构
[1] Department of Mechanical Engineering, Kagoshima University, Kagoshima-shi, Kagoshima, 890-0065
来源
Nihon Kikai Gakkai Ronbunshu, B | 2008年 / 6卷 / 1239-1246期
关键词
Flow patterns; Gas-liquid two phase flow; Microchannel; Multiphase flow; Optical fiber sensor; Void fraction;
D O I
10.1299/kikaib.74.1239
中图分类号
学科分类号
摘要
An optical measurement system was developed to investigate the flow phenomena of gas-liquid two-phase flow in a circular microchannel with the diameter of 100 μm. From the output wave signals which correspond to the passages of the gas and the liquid by using multiple optical fibers and photodiodes, void fraction was measured successfully. The presence of a large compressible gas volume upstream of the mixing chamber had a significant effect on the two-phase flow characteristics in the microchannel, typified by the void fraction data. The flow patterns of bubbly flow, slug flow and ring film flow were observed. The characteristics of optical signal waves corresponding to these flow patterns have been described. The time averaged value of the optical signal wave agreed well with the space averaged value of the volume fraction of the gas from video image.
引用
收藏
页码:1239 / 1246
页数:7
相关论文
共 50 条
  • [21] Frictional pressure drop and void fraction analysis in air-water two-phase flow in a microchannel
    Barreto, E. X.
    Oliveira, J. L. G.
    Passos, J. C.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 72 : 1 - 10
  • [22] Statistical characteristics of two-phase gas-liquid flow in a vertical microchannel
    Kozulin, I. A.
    Kuznetsov, V. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2011, 52 (06) : 956 - 964
  • [23] Flow patterns and void fractions of phases during gas-liquid two-phase and gas-liquid-liquid three-phase flow in U-bends
    Pietrzak, Marcin
    Witczak, Stanislaw
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2013, 44 : 700 - 710
  • [24] Application of C4D Technique to Void Fraction Measurement of Gas-Liquid Two-Phase Flow: Stratified Flow
    Ri, Kum Chol
    Wang, Lei
    Fu, Sanfu
    Huang, Zhiyao
    Wang, Baoliang
    Li, Haiqing
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 3632 - 3635
  • [25] Liquid-Liquid Two-Phase Flow Patterns and Mass Transfer Characteristics in a Circular Microchannel
    Zhang, Xubin
    Chen, Dan
    Wang, Yan
    Cai, Wangfeng
    ADVANCED COMPOSITE MATERIALS, PTS 1-3, 2012, 482-484 : 89 - 94
  • [26] Gas-liquid two-phase flow in microchannel at elevated pressure
    Zhao, Yuchao
    Chen, Guangwen
    Ye, Chunbo
    Yuan, Quan
    CHEMICAL ENGINEERING SCIENCE, 2013, 87 : 122 - 132
  • [27] Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger
    Asano, H
    Takenaka, N
    Fujii, T
    Maeda, N
    APPLIED RADIATION AND ISOTOPES, 2004, 61 (04) : 707 - 713
  • [28] Quantitative measurement of void fraction distributions in gas-liquid two-phase flow by neutron radiography
    Takenaka, N
    Kawano, S
    Matsumoto, A
    ADVANCES IN NONDESTRUCTIVE EVALUATION, PT 1-3, 2004, 270-273 : 1356 - 1360
  • [29] Velocities Effects on the Void Fraction Distribution in a Vertical Gas-Liquid Two-Phase Flow Channel
    Zainon, Mohd Zamri
    Zubir, Mohd Ardan
    Ramli, Rahizar
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES IV, PTS 1 AND 2, 2014, 889-890 : 369 - +
  • [30] Gas-liquid two-phase flow in microchannels - Part I: two-phase flow patterns
    Triplett, KA
    Ghiaasiaan, SM
    Abdel-Khalik, SI
    Sadowski, DL
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (03) : 377 - 394