High-Performance Lightweight and Flexible PVDF-B/MXene/Chitosan Composite Aerogel for Sensitive Self-Powered Sensing

被引:1
|
作者
Liu, Yanbo [1 ,2 ]
Zhang, Tianyi [1 ]
Yang, Bo [1 ]
Hao, Ming [2 ]
Hu, Xiaodong [2 ]
Wang, Xiaoxiao [1 ]
机构
[1] Wuhan Text Univ, Sch Text Sci & Engn, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Hubei, Peoples R China
[2] Tiangong Univ, Sch Text Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 21期
基金
中国国家自然科学基金;
关键词
Piezoelectric devices; Aerogel; Electrode-free; MXene; Chitosan; NANOPARTICLES; HYBRID;
D O I
10.1021/acsapm.4c01731
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Piezoelectric devices are becoming increasingly attractive in areas such as wearable electronics, mobile environmental sensors, and health monitoring due to their unique capability to harvest discrete mechanical energy. Nevertheless, most piezoelectric materials are fabricated into low-dimensional products, which limits the performance breakthroughs and application prospects of these devices. Here, a series of polyvinylidenefluoride (PVDF) doped with dopamine hydrochloride@BaTiO3/MXene/chitosan (PVDF-B/MXene/CS) composite aerogel piezoelectric devices with outstanding output performance were fabricated by combining electrospinning and freeze-drying techniques. Among them, the PVDF-B/MXene/CS composite aerogel-based piezoelectric devices with electrodes exhibited rather better output performance compared to those without electrodes, while the electrodeless piezoelectric devices demonstrated excellent piezoelectric response under various stress modes. The electrodeless piezoelectric devices maintained a stable voltage over 1800 cycles and achieved the maximum power output of 4.25 nW with an external resistance of 100 M Omega. Furthermore, the electrodeless piezoelectric device was capable of charging capacitors with varying capacities and could easily illuminate a small light emitting diode (LED) light by manual tapping. These piezoelectric devices showed tangible and stable signals regarding mechanical stimuli monitoring, such as wrist bending, finger tapping, and pedal movements. This work not only expands the range of aerogel-based piezoelectric materials but also showcases their immense potential in the field of piezoelectric devices.
引用
收藏
页码:12983 / 12991
页数:9
相关论文
共 50 条
  • [1] Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor
    Xu, Ting
    Wang, Yaxuan
    Liu, Kun
    Zhao, Qingshuang
    Liang, Qidi
    Zhang, Meng
    Si, Chuanling
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (03)
  • [2] Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor
    Ting Xu
    Yaxuan Wang
    Kun Liu
    Qingshuang Zhao
    Qidi Liang
    Meng Zhang
    Chuanling Si
    Advanced Composites and Hybrid Materials, 2023, 6
  • [3] Synergistic Effect of GO and MXene Enables Ultrasensitive, Reversible, and Self-Powered Fire Warning of a GO/MXene/Chitosan Aerogel
    He, Xi
    Xu, Yaozheng
    Wang, Yuan
    Wu, Linhan
    Chen, Fei-Fei
    Yu, Yan
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 59346 - 59357
  • [4] High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO3 Nanofibers for Self-Powered Vibration Sensing Applications
    Athira, B. S.
    George, Ashitha
    Priya, K. Vaishna
    Hareesh, U. S.
    Gowd, E. Bhoje
    Surendran, Kuzhichalil Peethambharan
    Chandran, Achu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (39) : 44239 - 44250
  • [5] A triboelectric nanogenerator based on MXene/TPU composite films with excellent stretchability for self-powered flexible sensing
    Fan, Jiacheng
    Yang, Rushen
    Du, Yaqiong
    Wang, Fengling
    Wang, Libo
    Yang, Jia
    Zhou, Aiguo
    NANO ENERGY, 2024, 129
  • [6] Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing
    Mi, Hao-Yang
    Jing, Xin
    Cai, Zhiyong
    Liu, Yuejun
    Turng, Lih-Sheng
    Gong, Shaoqin
    NANOSCALE, 2018, 10 (48) : 23131 - 23140
  • [7] Large-scalable, flexible and durable MXene/gelatin composite film for electromagnetic shielding and self-powered sensing
    Zhou, Xu
    Ye, Xiao-Ai
    Zhang, Xu
    Wen, Dong
    Wang, Hong
    Wang, Gui-Gen
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [8] Superelastic MXene/Polymer aerogels for High-Performance Battery-Type Self-Powered electronic skins
    Liu, Muxiang
    Liang, Xing
    Zhang, Xiaoyu
    Hu, Zhenyu
    Gu, Puzhong
    Yang, Xiao
    Zu, Guoqing
    Huang, Jia
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [9] Chitosan-based triboelectric materials for self-powered sensing at high temperatures
    Chen, Wencan
    Li, Chao
    Tao, Yehan
    Lu, Jie
    Du, Jian
    Wang, Haisong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (11) : 2518 - 2527
  • [10] Achieving high-performance energy harvesting and self-powered sensing in a flexible cellulose nanofibril/MoS2/BaTiO3 composite piezoelectric nanogenerator
    Xu, Menghan
    Wu, Tao
    Song, Yiheng
    Jiang, Ming
    Shi, Zhuqun
    Xiong, Chuanxi
    Yang, Quanling
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (43) : 15552 - 15565