Traffic sign recognition using deep learning

被引:0
|
作者
Patel V. [1 ]
Mehta J. [1 ]
Iyer S. [1 ]
Sharma A.K. [1 ]
机构
[1] Instrumentation and Control Engineering Department, Institute of Technology, Nirma University, Gujarat
关键词
ADAS; advanced driver assistance systems; CNN; computer vision; convolutional neural network; deep learning; German Traffic Sign Recognition Benchmark; GTSRB; image processing; traffic sign recognition;
D O I
10.1504/IJVAS.2022.133005
中图分类号
学科分类号
摘要
Recognition of traffic signs is an integral step towards achieving Advanced Driver Assistance Systems (ADAS) as distracted driving is one of the primary causes of road accidents and fatalities. This paper attempts to exploit the capabilities of Convolutional Neural Networks (CNN) to recognise traffic signs under various computational and environmental constraints. The German Traffic Sign Recognition Benchmark (GTSRB) dataset is used for the classification of images. The dataset is subjected to various image processing techniques like greyscaling, denoising, filtering, and thresholding to obtain a generalised model for the recognition of traffic signs. The neural network used here comprises three convolution layers each followed by a max pooling layer which further are followed by four fully connected dense layers. The models are trained for 100 epochs with a validation split of 20%. The model performs best with 'Adam' optimiser with a learning rate of 0.001. © 2022 Inderscience Enterprises Ltd.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 50 条
  • [1] Deep Learning Approach for US Traffic Sign Recognition
    Nuakoh, Emmanuel B.
    Roy, Kaushik
    Yuan, Xiaohong
    Esterline, Albert
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 47 - 50
  • [2] Traffic sign recognition based on deep learning
    Zhu, Yanzhao
    Yan, Wei Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (13) : 17779 - 17791
  • [3] Traffic sign recognition based on deep learning
    Yanzhao Zhu
    Wei Qi Yan
    Multimedia Tools and Applications, 2022, 81 : 17779 - 17791
  • [4] Vietnamese Traffic Sign Recognition Using Deep Learning
    Dinh Thuan Nguyen
    Minh Khanh Phan
    Phuong-Nam Tran
    Duc Ngoc Minh Dang
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 30 - 35
  • [5] Traffic Sign Recognition by Image Preprocessing and Deep Learning
    Khamdamov, U. R.
    Umarov, M. A.
    Khalilov, S. P.
    Kayumov, A. A.
    Abidova, F. Sh.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT II, 2024, 14532 : 81 - 92
  • [6] Development of Deep Learning Models for Traffic Sign Recognition in Autonomous Vehicles
    Kozhamkulova, Zhadra
    Bidakhmet, Zhanar
    Vorogushina, Marina
    Tashenova, Zhuldyz
    Tussupova, Bella
    Nurlybaeva, Elmira
    Kambarov, Dastan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 913 - 920
  • [7] Traffic Sign Recognition Using Deep Convolutional Networks and Extreme Learning Machine
    Zeng, Yujun
    Xu, Xin
    Fang, Yuqiang
    Zhao, Kun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: IMAGE AND VIDEO DATA ENGINEERING, ISCIDE 2015, PT I, 2015, 9242 : 272 - 280
  • [8] Ghanaian Sign Language Recognition Using Deep Learning
    Odartey, Lamptey K.
    Huang, Yonfeng
    Asantewaa, Effah E.
    Agbedanu, Promise R.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (PRAI 2019), 2019, : 81 - 86
  • [9] An adaptive traffic sign recognition scheme based on deep learning in complex environment
    Liao, Junguo
    Zhou, Yixun
    Qin, Qiangqiang
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 921 - 928
  • [10] Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features
    Zeng, Yujun
    Xu, Xin
    Shen, Dayong
    Fang, Yuqiang
    Xiao, Zhipeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (06) : 1647 - 1653