Molecular dynamics simulations of glancing angle deposition of polymer nanoparticles

被引:0
作者
Kessler D.A. [1 ]
Merrill M.H. [1 ]
机构
[1] U.S. Naval Research Laboratory, Washington, DC
来源
| 2018年 / Wiley Blackwell卷 / 261期
关键词
D O I
10.1002/9781119423829.ch34
中图分类号
学科分类号
摘要
Glancing angle deposition (GLAD) has been used with great success to create thin films composed of arrays of nanostructures by utilizing typical physical vapor deposition processes to deposit onto a substrate that is at a high angle of obliquity from the incoming material. However, currently PVD is limited in the range of materials that can be used and restricts the size of the deposited material to small molecules or atom clusters. We propose combining GLAD with a gas-phase deposition method, such as electrospray ionization, that would allow the deposition of a much wider range of larger building block materials (e.g., quantum dots, proteins, and polymers). In this work, we simulate the deposition of model polymer nanodroplets onto a model silica substrate using classical molecular dynamics. We discuss how deposition angle, system temperature, molecular weight, and impact velocity affect the shape of impacted droplets and the initiation of compound structures formed by multiple impacts. © 2017 The American Ceramic Society.
引用
收藏
页码:391 / 404
页数:13
相关论文
共 40 条
  • [21] Grifoll J., Rosell-Llompart J., Efficient Lagrangian simulation of electrospray droplets dynamics, J. Aerosol Sci, 47, pp. 78-93, (2012)
  • [22] Abraham M., Murtola T., Schulz R., Pall S., Smith J., Hess B., Lindahl E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, Softwarex, 1, pp. 19-25, (2015)
  • [23] van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A., Berendsen H., GROMACS: Fast, flexible, and free, J. Comp. Chem., 26, pp. 1701-1719, (2005)
  • [24] Allen M., Tildesley D., Computer Simulation of Liquids, (1987)
  • [25] Darden T., York D., Pedersen L., Particle mesh Ewald: An N*log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, pp. 10089-10092, (1993)
  • [26] Hockney R., Goel S., Eastwood J., Quiet high-resolution computer models of a plasma, J. Comput. Phys, 14, (1974)
  • [27] Parrinello M., Rahman A., Polymorphic transitions in single-crystals-A new molecular dynamics method, J. Appl. Phys., 52, pp. 7182-7190, (1981)
  • [28] Nose S., A molecular-dynamics method for simulations in the canonical ensemble, Mol. Phys., 52, pp. 255-268, (1984)
  • [29] Hoover W., Canonical dynamics-Equilibrium phase-space distributions, Phys. Rev. A, 31, pp. 1695-1697, (1985)
  • [30] Fischer J., Paschek D., Geiger A., Sadowski G., Modeling of aqueous poly(Oxyethylene) solutions: 1. Atomistic simulations, J. Phys. Chem. B, 112, pp. 2388-2398, (2008)