Molecular dynamics simulations of glancing angle deposition of polymer nanoparticles

被引:0
作者
Kessler D.A. [1 ]
Merrill M.H. [1 ]
机构
[1] U.S. Naval Research Laboratory, Washington, DC
来源
| 2018年 / Wiley Blackwell卷 / 261期
关键词
D O I
10.1002/9781119423829.ch34
中图分类号
学科分类号
摘要
Glancing angle deposition (GLAD) has been used with great success to create thin films composed of arrays of nanostructures by utilizing typical physical vapor deposition processes to deposit onto a substrate that is at a high angle of obliquity from the incoming material. However, currently PVD is limited in the range of materials that can be used and restricts the size of the deposited material to small molecules or atom clusters. We propose combining GLAD with a gas-phase deposition method, such as electrospray ionization, that would allow the deposition of a much wider range of larger building block materials (e.g., quantum dots, proteins, and polymers). In this work, we simulate the deposition of model polymer nanodroplets onto a model silica substrate using classical molecular dynamics. We discuss how deposition angle, system temperature, molecular weight, and impact velocity affect the shape of impacted droplets and the initiation of compound structures formed by multiple impacts. © 2017 The American Ceramic Society.
引用
收藏
页码:391 / 404
页数:13
相关论文
共 40 条
  • [1] Zhou Y., Taima T., Miyader T., Yamanari T., Kitamurai M., Nakatsui K., Yoshida Y., Glancing angle deposition of copper iodide nanocrystals for efficient organic photovoltaics, Nano Lett, 12, pp. 4146-4152, (2012)
  • [2] Gibbs J., Mark A., Eslami S., Fischer P., Plasmonic nanohelix metamaterials with tailorable giant circular dichroism, App. Phys. Lett., 103, (2013)
  • [3] Kiema G., Jensen M., Brett M., Glancing angle deposition thin film microstructures for microfluidic applications, Chem. Mater., 17, pp. 4046-4048, (2005)
  • [4] Hawkeye M., Brett M., Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films, J. Vac. Sci. Technol. A, 25, pp. 1317-1335, (2007)
  • [5] Zhao Y.-P., Ye D.-X., Wang G.-C., Lu T.-M., Designing nanostructures by glancing angle deposition, Proc. SPIE, 5219, Nanotubes and Nanowires, pp. 59-73, (2003)
  • [6] Pursel S., Horn M., Demirel M., Lakhtakia A., Growth of sculptured polymer submicron wire assemblies by vapor deposition, Polymer, 46, pp. 9544-9548, (2005)
  • [7] Fenn J., Ion formation from charged droplets: Roles of geometry, energy, and time, J. Am. Soc. Mass Spectrom, 4, pp. 524-535, (1993)
  • [8] Kortshage U., Sankaran R., Pereira R., Girshick S., Wu J., Aydil E., Nonthermal plasma synthesis of nanocrystals: Fundamental principles, materials, and applications, Chem. Rev, 116, pp. 11061-11127, (2016)
  • [9] Merrill M., Large-scale electrospray ionization methods for nanocoating application, Proc. ASME Int. Mech. Eng. Cong. Exp
  • [10] Morota K., Matsumoto H., Mizukoshi T., Konosu Y., Minagawa M., Tanioka A., Yamagata Y., Inoue K., Poly(Ethylene oxide) thin films produced by electrospray deposition: Morphology control and additive effects of alcohols on nanostructure, J. Colloid Interface Sci, 279, pp. 484-492, (2004)