Hamilton-Jacobi-Bellman equations for Rydberg-blockade processes

被引:2
|
作者
Fromonteil, Charles [1 ,2 ]
Tricarico, Roberto [1 ,2 ,3 ]
Cesa, Francesco [1 ,2 ,4 ,5 ]
Pichler, Hannes [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Scuola Super Meridionale, Largo San Marcellino 10, I-80138 Naples, Italy
[4] Univ Trieste, Dept Phys, Str Costiera 11, I-34151 Trieste, Italy
[5] Ist Nazl Fis Nucl, Trieste Sect, Via Valerio 2, I-34127 Trieste, Italy
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
VISCOSITY SOLUTIONS; QUANTUM; GATES;
D O I
10.1103/PhysRevResearch.6.033333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss time-optimal control problems for two setups involving globally driven Rydberg atoms in the blockade limit by deriving the associated Hamilton-Jacobi-Bellman equations. From these equations, we extract the globally optimal trajectories and the corresponding controls for several target processes of the atomic system, using a generalized method of characteristics. We apply this method to retrieve known results for CZ and C-phase gates, and to find new optimal pulses for all elementary processes involved in the universal quantum computation scheme introduced in [Phys. Rev. Lett. 131, , 170601 (2023)].
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hamilton-Jacobi-Bellman equations for Rydberg-blockade processes
    Fromonteil, Charles
    Tricarico, Roberto
    Cesa, Francesco
    Pichler, Hannes
    arXiv,
  • [2] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [3] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [4] DEGENERATE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 329 - 332
  • [5] STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    PENG, SG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) : 284 - 304
  • [6] HAMILTON-JACOBI-BELLMAN EQUATIONS ASSOCIATED TO SYMMETRIC STABLE PROCESSES
    Zalinescu, Adrian
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (01): : 163 - 196
  • [7] Verification theorems for Hamilton-Jacobi-Bellman equations
    Garavello, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) : 1623 - 1642
  • [8] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [9] NONLINEAR POTENTIALS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS
    NOSOVSKIJ, GV
    ACTA APPLICANDAE MATHEMATICAE, 1993, 30 (02) : 101 - 123
  • [10] Hamilton-Jacobi-Bellman equations on time scales
    Department of Mathematics, Guizhou University, Guiyang, 550025, China
    不详
    Math. Comput. Model., 9-10 (2019-2028):