Evaluating a quantum-classical quantum Monte Carlo algorithm with Matchgate shadows

被引:2
|
作者
Huang, Benchen [1 ,2 ]
Chen, Yi-Ting [3 ]
Gupt, Brajesh [1 ]
Suchara, Martin [4 ]
Tran, Anh [1 ]
Mcardle, Sam [5 ]
Galli, Giulia [2 ,6 ,7 ,8 ]
机构
[1] AWS Worldwide Specialist Org, Seattle, WA 98170 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Amazon Braket, New York, NY 10018 USA
[4] Microsoft Azure Quantum, Redmond, WA 98052 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[6] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[7] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[8] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
EQUIVALENCE; STATES;
D O I
10.1103/PhysRevResearch.6.043063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solving the electronic structure problem of molecules and solids to high accuracy is a major challenge in quantum chemistry and condensed matter physics. The rapid emergence and development of quantum computers offer a promising route to systematically tackle this problem. Recent work by [Huggins et al., Nature (London) 603, 416 (2022)] proposed a hybrid quantum-classical quantum Monte Carlo (QC-QMC) algorithm using Clifford shadows to determine the ground state of a Fermionic Hamiltonian. This approach displayed inherent noise resilience and the potential for improved accuracy compared to its purely classical counterpart. Nevertheless, the use of Clifford shadows introduces an exponentially scaling postprocessing cost. In this work, we investigate an improved QC-QMC scheme utilizing the recently developed Matchgate shadows technique [Commun. Math. Phys. 404, 629 (2023)], which removes the aforementioned exponential bottleneck. We observe from experiments on quantum hardware that the use of Matchgate shadows in QC-QMC is inherently noise robust. We show that this noise resilience has a more subtle origin than in the case of Clifford shadows. Nevertheless, we find that classical postprocessing, while asymptotically efficient, requires hours of runtime on thousands of classical CPUs for even the smallest chemical systems, presenting a major challenge to the scalability of the algorithm.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Quantum Monte Carlo calculations of two neutrons in finite volume
    Klos, P.
    Lynn, J. E.
    Tews, I.
    Gandolfi, S.
    Gezerlis, A.
    Hammer, H. -W.
    Hoferichter, M.
    Schwenk, A.
    PHYSICAL REVIEW C, 2016, 94 (05)
  • [32] Quantum Monte Carlo Study of Anderson Magnetic Impurities in Semiconductors
    Bulut, N.
    Tomoda, Y.
    Tanikawa, K.
    Takahashi, S.
    Maekawa, S.
    ADVANCES IN NANOSCALE MAGNETISM, 2009, 122 : 67 - 87
  • [33] Learnability Transitions in Monitored Quantum Dynamics via Eavesdropper's Classical Shadows
    Ippoliti, Matteo
    Khemani, Vedika
    PRX QUANTUM, 2024, 5 (02):
  • [34] Hybrid quantum-classical approach for coupled-cluster Green's function theory
    Keen, Trevor
    Peng, Bo
    Kowalski, Karol
    Lougovski, Pavel
    Johnston, Steven
    QUANTUM, 2022, 6 : 1 - 14
  • [35] Quantum impurity in a Tomonaga-Luttinger liquid: Continuous-time quantum Monte Carlo approach
    Hattori, K.
    Rosch, A.
    PHYSICAL REVIEW B, 2014, 90 (11):
  • [36] Auxiliary-field quantum Monte Carlo calculations of the molybdenum dimer
    Purwanto, Wirawan
    Zhang, Shiwei
    Krakauer, Henry
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (24)
  • [37] Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons
    Golor, Michael
    Lang, Thomas C.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2013, 87 (15):
  • [38] Quantum Monte Carlo study of honeycomb antiferromagnets under a triaxial strain
    Sun, Junsong
    Ma, Nvsen
    Ying, Tao
    Guo, Huaiming
    Feng, Shiping
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [39] Quantum monte carlo for economics: Stress testing and macroeconomic deep learning
    Skavysh, Vladimir
    Priazhkina, Sofia
    Guala, Diego
    Bromley, Thomas R.
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2023, 153
  • [40] Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach
    Wang, Lei
    Liu, Ye-Hua
    Imriska, Jakub
    Ma, Ping Nang
    Troyer, Matthias
    PHYSICAL REVIEW X, 2015, 5 (03):