Evaluating a quantum-classical quantum Monte Carlo algorithm with Matchgate shadows

被引:2
|
作者
Huang, Benchen [1 ,2 ]
Chen, Yi-Ting [3 ]
Gupt, Brajesh [1 ]
Suchara, Martin [4 ]
Tran, Anh [1 ]
Mcardle, Sam [5 ]
Galli, Giulia [2 ,6 ,7 ,8 ]
机构
[1] AWS Worldwide Specialist Org, Seattle, WA 98170 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Amazon Braket, New York, NY 10018 USA
[4] Microsoft Azure Quantum, Redmond, WA 98052 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[6] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[7] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[8] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
EQUIVALENCE; STATES;
D O I
10.1103/PhysRevResearch.6.043063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solving the electronic structure problem of molecules and solids to high accuracy is a major challenge in quantum chemistry and condensed matter physics. The rapid emergence and development of quantum computers offer a promising route to systematically tackle this problem. Recent work by [Huggins et al., Nature (London) 603, 416 (2022)] proposed a hybrid quantum-classical quantum Monte Carlo (QC-QMC) algorithm using Clifford shadows to determine the ground state of a Fermionic Hamiltonian. This approach displayed inherent noise resilience and the potential for improved accuracy compared to its purely classical counterpart. Nevertheless, the use of Clifford shadows introduces an exponentially scaling postprocessing cost. In this work, we investigate an improved QC-QMC scheme utilizing the recently developed Matchgate shadows technique [Commun. Math. Phys. 404, 629 (2023)], which removes the aforementioned exponential bottleneck. We observe from experiments on quantum hardware that the use of Matchgate shadows in QC-QMC is inherently noise robust. We show that this noise resilience has a more subtle origin than in the case of Clifford shadows. Nevertheless, we find that classical postprocessing, while asymptotically efficient, requires hours of runtime on thousands of classical CPUs for even the smallest chemical systems, presenting a major challenge to the scalability of the algorithm.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] SHARC meets TEQUILA: mixed quantum-classical dynamics on a quantum computer using a hybrid quantum-classical algorithm
    Gil, Eduarda Sangiogo
    Oppel, Markus
    Kottmann, Jakob S.
    Gonzalez, Leticia
    CHEMICAL SCIENCE, 2025, 16 (02) : 596 - 609
  • [2] Quantum Computing Approach to Fixed-Node Monte Carlo Using Classical Shadows
    Blunt, Nick S.
    Caune, Laura
    Quiroz-Fernandez, Javiera
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (04) : 1652 - 1666
  • [3] Quantum-classical hybrid quantum superdense coding
    Yang, Wei
    Huang, Liusheng
    Liu, An
    Tian, Miaomiao
    Miao, Haibo
    PHYSICA SCRIPTA, 2013, 88 (01)
  • [4] Quantum-classical hybrid algorithm for the simulation of all-electron correlation
    Boyn, Jan-Niklas
    Lykhin, Aleksandr O.
    Smart, Scott E.
    Gagliardi, Laura
    Mazziotti, David A.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (24)
  • [5] Quantum-classical correspondence in integrable systems
    Zhao, Yiqiang
    Wu, Biao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [6] Quantum-classical correspondence in the vicinity of periodic orbits
    Kumari, Meenu
    Ghose, Shohini
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [7] Quantum-classical hybrid information processing via a single quantum system
    Tran, Quoc Hoan
    Ghosh, Sanjib
    Nakajima, Kohei
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [8] Quantum Monte Carlo at the graphene quantum Hall edge
    Wang, Zhenjiu
    Luitz, David J.
    Villadiego, Inti Sodemann
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [9] Quantum-classical boundary for precision optical phase estimation
    Birchall, Patrick M.
    O'Brien, Jeremy L.
    Matthews, Jonathan C. F.
    Cable, Hugo
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [10] Quantum-Classical Hybrid Systems and Ehrenfest's Theorem
    Sergi, Alessandro
    Lamberto, Daniele
    Migliore, Agostino
    Messina, Antonino
    ENTROPY, 2023, 25 (04)