Huberized multiclass support vector machine for microarray classification

被引:2
作者
Li J.-T. [1 ]
Jia Y.-M. [1 ]
机构
[1] The Seventh Research Division, Beihang University
来源
Zidonghua Xuebao/ Acta Automatica Sinica | 2010年 / 36卷 / 03期
基金
中国国家自然科学基金;
关键词
Gene selection; Grouping effect; Microarray classification; Solution path; Support vector machine (SVM);
D O I
10.1016/s1874-1029(09)60016-1
中图分类号
学科分类号
摘要
This paper proposes a new multiclass support vector machine (SVM) for simultaneous gene selection and microarray classification. Combining the huberized hinge loss function and the elastic net penalty, the proposed SVM can perform automatic gene selection and encourages a grouping effect. The coefficient paths of the proposed SVM are shown to be piecewise linear with respect to the single regularization parameter, based on which the solution path algorithm is developed with low computational complexity. Experiments performed on the leukemia data set are provided to verify the obtained results. © 2010 Acta Automatica Sinica.
引用
收藏
页码:399 / 405
页数:6
相关论文
共 17 条
[1]  
Dudoit S., Fridlyand J., Speed T.P., Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 457, pp. 77-87, (2002)
[2]  
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 5439, pp. 531-537, (1999)
[3]  
Guyon I., Weston J., Barnhill S., Vapnik V., Gene selection for cancer classification using support vector machines, Machine Learning, 46, 1-3, pp. 389-422, (2002)
[4]  
Wang L., Zhu J., Zou H., Hybrid huberized support vector machines for microarray classification and gene selection, Bioinformatics, 24, 3, pp. 412-419, (2008)
[5]  
Wang L., Zhu J., Zou H., The doubly regularized support vector machine, Statistica Sinica, 16, 2, pp. 589-615, (2006)
[6]  
Zhu J., Rosset S., Hastie T., Tibshirani R., 1-norm support vector machines, Advances in Neural Information Processing Systems, pp. 49-56, (2004)
[7]  
Lee Y., Cui Z., Characterizing the solution path of multicategory support vector machines, Statistica Sinica, 16, 2, pp. 391-409, (2006)
[8]  
Lee Y., Lin Y., Wahba G., Multicategory support vector machines: Theory, and application to the classification of microarray data and satellite radiance data, Journal of the American Statistical Association, 99, 465, pp. 67-81, (2004)
[9]  
Wang L.F., Shen X.T., On l<sub>1</sub>-norm multi-class support vector machines: Methodology and theory, Journal of the American Statistical Association, 102, 478, pp. 583-594, (2007)
[10]  
Zhang H.H., Liu Y., Wu Y., Zhu J., Variable selection for the multicategory SVM via adaptive sup-norm regularization, Electronic Journal of Statistics, 2, 1, pp. 149-167, (2008)