Surface-Plasmon Resonance-Enhanced Upconversion Luminescence of Single Nanocrystal Based on Single Gold Nanorod

被引:0
|
作者
Xue Y. [1 ]
Rong Y. [1 ]
Ma Q. [1 ]
Pan C. [1 ]
Chen L. [1 ]
Wu E. [1 ]
Wu B. [1 ]
机构
[1] State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai
来源
Guangxue Xuebao/Acta Optica Sinica | 2017年 / 37卷 / 07期
关键词
Gold nanorod; Localized surface plasmon resonance; Luminescence enhancement; Optics at surfaces; Upconversion luminescence;
D O I
10.3788/AOS201737.0724002
中图分类号
学科分类号
摘要
Rare-earth ion doped upconversion nanocrystals show wide applications in bioimaging and photovoltaics. However, its low upconversion efficiency limits their applications. The single Au nanorod and single upconversion nanocrystal are coupled in nanometer scale with an atomic force microscope probe manipulation. The effect of localized surface plasmon resonance of Au nanorod on the nanocrystal's upconversion luminescence is studied by single-particle spectroscopy. Results show that the upconversion luminescence intensity of nanocrystal shows strong dependence on the laser polarization direction. When the laser polarization is parallel to the long axis of Au nanorod, the maximum enhancement folds of 18 and 40 are obtained for the green and red upconversion luminescence of nanocrystal. © 2017, Chinese Lasers Press. All right reserved.
引用
收藏
相关论文
共 22 条
  • [1] Zeng J.H., Su J., Li Z.H., Et al., Synthesis and upconversion luminescence of hexagonal-phase NaYF<sub>4</sub>: Yb, Er<sup>3+</sup> phosphors of controlled size and morphology, Advanced Materials, 17, 17, pp. 2119-2123, (2005)
  • [2] Ye S., Song J., Chen L., Et al., Research on photoluminescence of Nd<sup>3+</sup> doped NaYF<sub>4</sub>: Yb, Er/Tm upconversion nanoparticles, Acta Optica Sinica, 35, 8, (2015)
  • [3] Wang F., Liu X.G., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews, 38, 4, pp. 976-989, (2009)
  • [4] Zhou J., Liu Q., Feng W., Et al., Upconversion luminescent materials: Advances and applications, Chemical Reviews, 115, 1, pp. 395-465, (2015)
  • [5] Huang X.R., Han S.Y., Huang W., Et al., Enhancing solar cell efficiency: The search for luminescent materials as spectral converters, Chemical Society Reviews, 42, 1, pp. 173-201, (2013)
  • [6] Li C.X., Yang D.M., Ma P.G., Et al., Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery, Small, 9, 24, pp. 4150-4159, (2013)
  • [7] Chen G.Y., Qiu H.L., Prasad P.N., Et al., Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics, Chemical Reviews, 114, 10, pp. 5161-5214, (2014)
  • [8] Liu X.F., Dong G.P., Qiao Y.B., Et al., Transparent colloid containing upconverting nanocrystals: An alternative medium for three-dimensional volumetric display, Applied Optics, 47, 34, pp. 6416-6421, (2008)
  • [9] Saboktakin M., Ye X., Oh S.J., Et al., Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation, ACS Nano, 6, 10, pp. 8758-8766, (2012)
  • [10] Yin Z., Zhou D.L., Xu W., Et al., Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals, ACS Applied Materials & Interfaces, 8, 18, pp. 11667-11674, (2016)