Thermal, mechanical, and morphological properties of oil palm cellulose nanofibril reinforced green epoxy nanocomposites

被引:1
|
作者
Yusuf, J. [1 ]
Sapuan, S. M. [1 ,2 ]
Rashid, Umer [3 ,4 ]
Ilyas, R. A. [5 ,6 ]
Hassan, M. R. [1 ]
机构
[1] Univ Putra Malaysia, Adv Engn Mat & Composites Res Ctr AEMC, Dept Mech & Mfg Engn, UPM Serdang 43400, Selangor, Malaysia
[2] Univ Tenaga Nas, Inst Energy Infrastruct IEI, Jalan IKRAM UNITEN, Kajang 43000, Malaysia
[3] Univ Putra Malaysia, Inst Nanosci & Nanotechnol ION2, Serdang 43400, Selangor, Malaysia
[4] Chulalongkorn Univ, Ctr Excellence Catalysis Bioenergy & Renewable Che, Fac Sci, Bangkok 10330, Thailand
[5] Univ Teknol Malaysia, Fac Chem & Energy Engn, UTM Johor Baharu 81310, Johor, Malaysia
[6] Univ Teknol Malaysia, Ctr Adv Composite Mat, UTM Johor Baharu 81310, Johor, Malaysia
关键词
Nanocellulose; Green epoxy; Mechanical properties; Solution blending; Thermal properties; NATURAL FIBERS; COMPOSITES; GRAPHENE; BIOCOMPOSITES;
D O I
10.1016/j.ijbiomac.2024.134421
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, significant improvements in mechanical properties have been seen through the efficient inclusion of Oil Palm Cellulose Nanofibrils (CNF) as nano-fillers into green polymer matrices produced from biomass with a 28 % carbon content. The goal of the research was to make green epoxy nanocomposites utilizing solution blending process with acetone as the solvent with the different CNF loadings (0.1, 0.25, and 0.5 wt%). An ultrasonic bath was used in conjunction with mechanical stirring to guarantee that CNF was effectively dispersed throughout the green epoxy. The resultant nanocomposites underwent thorough evaluation, comparing them to unfilled green epoxy and evaluating their morphological, mechanical, and thermal behavior using a variety of instruments. Field-emission scanning electron microscopy (FE-SEM) was used to validate findings, which showed that the CNF were dispersed optimally inside the nanocomposites. The thermal degradation temperature (Td) of the nanocomposites showed a marginal decrement of 0.8 % in temperatures (from 348 degrees C to 345 degrees C), between unfilled green epoxy (neat) and 0.1 wt% of CNF loading. The mechanical test results, which showed a 13.3 % improvement in hardness and a 6.45 % rise in tensile strength when compared to unfilled green epoxy, were in line with previously published research. Overall, the outcomes showed that green nanocomposites have significantly improved in performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide
    Vashchuk, A.
    Motrunich, S.
    Lishchuk, P.
    Demchenko, V
    Isaiev, M.
    Iurzhenko, M.
    APPLIED NANOSCIENCE, 2022, 13 (7) : 4675 - 4683
  • [32] Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide
    A. Vashchuk
    S. Motrunich
    P. Lishchuk
    V. Demchenko
    M. Isaiev
    M. Iurzhenko
    Applied Nanoscience, 2023, 13 : 4675 - 4683
  • [33] Thermal and mechanical properties of electrospun nano-celullose reinforced epoxy nanocomposites
    Gabr, Mohamed H.
    Phong, Nguyen T.
    Okubo, Kazuya
    Uzawa, Kiyoshi
    Kimpara, Isao
    Fujii, Toru
    POLYMER TESTING, 2014, 37 : 51 - 58
  • [34] Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites
    Candan, Zeki
    Gardner, Douglas J.
    Shaler, Stephen M.
    COMPOSITES PART B-ENGINEERING, 2016, 90 : 126 - 132
  • [35] MECHANICAL AND THERMAL PROPERTIES OF ACRYLATED EPOXIDIZED PALM OIL AND EPOXY RESIN BLENDS
    Mustapha, Rohani
    Mustapha, Siti Noor Hidayah
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2021, 16 (04): : 2852 - 2866
  • [36] MECHANICAL AND THERMAL CONDUCTIVE PROPERTIES OF NATURAL AND SYNTHETIC CELLULOSE REINFORCED EPOXY COMPOSITES
    Shabeeb, Omran A.
    Mahjoob, Dawood S.
    Mahan, Hamid M.
    Hanon, Muammel M.
    IIUM ENGINEERING JOURNAL, 2022, 23 (02): : 193 - 204
  • [37] A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties
    Yong, Cheng
    Mei, Changtong
    Guan, Mingjie
    Wu, Qinglin
    Han, Jingquan
    Sun, Xiuxuan
    COMPOSITE INTERFACES, 2018, 25 (04) : 301 - 315
  • [38] Investigation into the morphological and mechanical properties of date palm fiber-reinforced epoxy structural composites
    Alarifi, Ibrahim M.
    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2021, 27 (01): : 77 - 88
  • [39] Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced with Different Date Palm Fillers
    Alshammari, Basheer A.
    Saba, Naheed
    Alotaibi, Majed D.
    Alotibi, Mohammed F.
    Jawaid, Mohammad
    Alothman, Othman Y.
    MATERIALS, 2019, 12 (13)
  • [40] Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites
    Gheith, Mohamed Hamdy
    Aziz, Mohamed Abdel
    Ghori, Waheedullah
    Saba, Naheed
    Asim, Mohammad
    Jawaid, Mohammad
    Alothman, Othman Y.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (01): : 853 - 860