Core-shell structure and high rate performance of Ce-doped Li4Ti5O12 for lithium-ion battery anode materials

被引:0
|
作者
Shen, Long [1 ]
He, Zuming [1 ]
Lin, Kai [1 ]
Su, Jiangbin [1 ]
Yi, Jun [1 ]
Chen, Longlong [1 ]
Xia, Yongmei [2 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[2] Jiangsu Univ Technol, Sch Mat Engn, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batterys; Ce-doped; Adulterant material; Carbon spheres; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; CARBON; STRATEGY; ULTRAHIGH; DIFFUSION; NANOWIRES; GRAPHENE; OXIDE;
D O I
10.1016/j.jelechem.2024.118725
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lithium titanate (LTO) can be a very promising anode material for lithium-ion batteries (LSBs) due to its inherent ability to inhibit the growth of lithium dendrites as well as its unique "zero-strain" properties. Unfortunately, the low electronic conductivity of LTO leads to serious shortcomings in higher electrochemical demands. In this work, the Ce3+-doped C@Li4Ti5-xCexO12 (x = 0, 0.1, 0.15 and 0.2) anode materials synthesized by the hydro- thermal method using carbon spheres as templates showed more significant improvement in both structural and electrochemical properties. The results demonstrate that electronic conductivity, lithium-ion diffusion rate, discharge specific capacity, discharge rate capability, and significant improvement stability of C@Li4Ti5-xCexO12 (x = 0.1, 0.15 and 0.2) electrodes. Among them, C@Li 4 Ti 4.85 Ce 0.15 O 12 electrode exhibits the highest initial discharge specific capacity (250.86 mAh/g) at 0.1C, which is 1.28-fold that of C@ Li4Ti5O12 (195.94 mAh/g), and initial discharge capacity from 205.96 mAh/g to 170.39 mAh/g after 500 cycles, corresponding to 82.7 % of the initial stable discharge capacity. The outstanding performance of C@Li 4 Ti 4.85 Ce 0.15 O 12 can be attributed to the lower interfacial impedance, higher electronic conductivity, high oxygen vacancy concentration, and moderate amount of Ce3+ doping can enhance the electrochemical activity. In addition, carbon sphere surface defects shown to be effective in improving lithium-ion storage. This work demonstrates that Ce3+ doping is an effective method to improve the electrochemical performance of LTOs and provides a more effective guide for designing and optimizing anode electrode materials for lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhanced electrochemical performance of core-shell Li4Ti5O12/PTh as advanced anode for rechargeable lithium-ion batteries
    Xu, Dong
    Wang, Peifeng
    Yang, Rui
    CERAMICS INTERNATIONAL, 2017, 43 (10) : 7600 - 7606
  • [2] In Situ Synthesis of Core-Shell Li4Ti5O12 @ Polyaniline Composites with Enhanced Rate Performance for Lithium-ion Battery Anodes
    Hui, Yani
    Cao, Liyun
    Xu, Zhanwei
    Huang, Jianfeng
    Ouyang, Haibo
    Li, Jiayin
    Hu, Hailing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (03) : 231 - 238
  • [3] High Rate Capability of Nd-Doped Li4Ti5O12 as an Effective Anode Material for Lithium-Ion Battery
    Zhang, Qianyu
    Li, Xi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (06): : 7816 - 7824
  • [4] Ultra-long life core-shell structure Li4Ti5O12/C nanocomposite anode materials for lithium ion batteries
    Liu, Kun
    Cui, Jinlong
    Yin, Jinpeng
    Man, Jianzong
    Cui, Yongfu
    Wen, Zhongsheng
    Sun, Juncai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 765 : 229 - 235
  • [5] Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries
    Hou, Lina
    Qin, Xue
    Gao, Xuejiao
    Guo, Tirong
    Li, Xiang
    Li, Jia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 774 : 38 - 45
  • [6] High performance Li4Ti5O12 material as anode for lithium-ion batteries
    Wang, Jie
    Zhao, Hailei
    Wen, Yeting
    Xie, Jingying
    Xia, Qing
    Zhang, Tianhou
    Zeng, Zhipeng
    Du, Xuefei
    ELECTROCHIMICA ACTA, 2013, 113 : 679 - 685
  • [7] Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery
    Lin, Chunfu
    Lai, Man On
    Lu, Li
    Zhou, Henghui
    Xin, Yuelong
    JOURNAL OF POWER SOURCES, 2013, 244 : 272 - 279
  • [8] High Tap Density Li4Ti5O12 Anode Materials Synthesized for High Rate Performance Lithium Ion Batteries
    Gao, Yuanrui
    Cheng, Chongling
    An, Juan
    Liu, Hongjiang
    Zhang, Dengsong
    Chen, Guorong
    Shi, Liyi
    CHEMISTRYSELECT, 2018, 3 (02): : 348 - 353
  • [9] A designed core-shell structural composite of lithium terephthalate coating on Li4Ti5O12 as anode for lithium ion batteries
    Yan, Yong
    Ben, Liubin
    Zhan, Yuanjie
    Liu, Yanyan
    Jin, Yi
    Wang, Suijun
    Huang, Xuejie
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2016, 26 (04) : 368 - 374
  • [10] Structure and Electrochemical Properties of Spinel Li4Ti5O12 Nanocomposites as Anode for Lithium-Ion Battery
    Sun, Xiangcheng
    Hegde, Manu
    Zhang, Yuefei
    He, Min
    Gu, Lin
    Wang, Yongqing
    Shu, Jie
    Radovanovic, Pavle V.
    Cui, Bo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (04): : 1583 - 1596