Chatter prediction in boring process using machine learning technique

被引:0
|
作者
Saravanamurugan S. [1 ]
Thiyagu S. [2 ]
Sakthivel N.R. [1 ]
Nair B.B. [3 ]
机构
[1] Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore
[2] Department of Mechanical Engineering, K.P.R. Institute of Engineering and Technology, Arasur, Coimbatore
[3] Department Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore
关键词
Boring; Chatter; Discrete wavelet transformation; DWT; Support vector machine; Surface roughness; SVM;
D O I
10.1504/IJMR.2017.088399
中图分类号
学科分类号
摘要
Chatter is the main reason behind the failure of any part in the machining centre and lowers the productivity. Chatter occurs as a dynamic interaction between the tool and the work piece resulting in poor surface finish, high-pitch noise and premature tool failure. In this paper, the chatter prediction is done by active method by considering the parameters like spindle speed, depth of cut, feed rate and including the dynamics of both the tool and the workpiece. The vibration signals are acquired using an accelerometer in a closed environment. From the acquired signals discrete wavelet transformation (DWT), features are extracted and classified into three different patterns (stable, transition and chatter) using support vector machine (SVM). The classified results are validated using surface roughness values (Ra). Copyright © 2017 Inderscience Enterprises Ltd.
引用
收藏
页码:405 / 422
页数:17
相关论文
共 50 条
  • [31] Water scarcity prediction for global region using machine learning
    Jain S.
    Parida A.K.
    Sankaranarayanan S.
    International Journal of Water, 2020, 14 (01) : 69 - 88
  • [32] Chatter Prediction in High Speed Machining of Titanium Alloy (Ti-6Al-4V) using Machine Learning Techniques
    Zacharia, Koshy
    Krishnakumar, P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 24 : 350 - 358
  • [33] Investigation of optimal feature for milling chatter identification using supervised machine learning techniques
    Mishra, Rohit
    Kiran, Matta S. N. S.
    Maheswaram, Manikantadhar
    Upadhyay, Akshat
    Singh, Bhagat
    JOURNAL OF ENGINEERING RESEARCH, 2024, 12 (04): : 950 - 962
  • [34] Prediction of cryptocurrency returns using machine learning
    Erdinc Akyildirim
    Ahmet Goncu
    Ahmet Sensoy
    Annals of Operations Research, 2021, 297 : 3 - 36
  • [35] Diabetes Prediction using Machine Learning Techniques
    Obulesu, O.
    Suresh, K.
    Ramudu, B. Venkata
    HELIX, 2020, 10 (02): : 136 - 142
  • [36] Consumer product prediction using machine learning
    Ajitha, P.
    Tamilvizhi, T.
    Sowjanya, K. Naga
    Surendran, R.
    Bala, Bhoomeshwar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (03) : 565 - 574
  • [37] Bankruptcy Prediction Using Machine Learning Techniques
    Shetty, Shekar
    Musa, Mohamed
    Bredart, Xavier
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (01)
  • [38] Prediction of cryptocurrency returns using machine learning
    Akyildirim, Erdinc
    Goncu, Ahmet
    Sensoy, Ahmet
    ANNALS OF OPERATIONS RESEARCH, 2021, 297 (1-2) : 3 - 36
  • [39] Frost Prediction for Vineyard Using Machine Learning
    Tamura, Yosuke
    Ding, Liya
    Noborio, Kosuke
    Shibuya, Kazuki
    2020 JOINT 11TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 21ST INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS-ISIS), 2020, : 447 - 450
  • [40] Machine learning based substructure coupling of machine tool dynamics and chatter stability
    Park, Simon S.
    Amani, Soheil
    Lee, Dong Yoon
    Lee, Jihyun
    Nam, Eunseok
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (01) : 297 - 300