Strong convergence theorem of the CQ algorithm for the multiple-set split feasibility problem

被引:0
|
作者
Guo, Yuansheng [1 ]
Yu, Yanrong [1 ]
Chen, Rudong [1 ]
机构
[1] Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China
来源
Proceedings - 2011 International Conference on Future Computer Sciences and Application, ICFCSA 2011 | 2011年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
5968026
中图分类号
学科分类号
摘要
Inverse problems
引用
收藏
页码:61 / 64
相关论文
共 50 条
  • [31] Some Krasnonsel'skii-Mann Algorithms and the Multiple-Set Split Feasibility Problem
    He, Huimin
    Liu, Sanyang
    Noor, Muhammad Aslam
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [32] Multiple-Set Split Feasibility Problems for Asymptotically Strict Pseudocontractions
    Chang, Shih-Sen
    Cho, Yeol Je
    Kim, J. K.
    Zhang, W. B.
    Yang, L.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [33] The strong convergence of a three-step algorithm for the split feasibility problem
    Yazheng Dang
    Yan Gao
    Optimization Letters, 2013, 7 : 1325 - 1339
  • [34] The strong convergence of a three-step algorithm for the split feasibility problem
    Dang, Yazheng
    Gao, Yan
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1325 - 1339
  • [35] Half-Space Relaxation Projection Method for Solving Multiple-Set Split Feasibility Problem
    Taddele, Guash Haile
    Kumam, Poom
    Gebrie, Anteneh Getachew
    Sitthithakerngkiet, Kanokwan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (03)
  • [36] Strong Convergence Theorem for Multiple Sets Split Feasibility Problems in Banach Spaces
    Shehu, Yekini
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (08) : 1021 - 1036
  • [37] Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces
    Mewomo, O. T.
    Ogbuisi, F. U.
    QUAESTIONES MATHEMATICAE, 2018, 41 (01) : 129 - 148
  • [38] On the convergence of CQ algorithm with variable steps for the split equality problem
    Fenghui Wang
    Numerical Algorithms, 2017, 74 : 927 - 935
  • [39] On the convergence of CQ algorithm with variable steps for the split equality problem
    Wang, Fenghui
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 927 - 935
  • [40] On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem
    Kesornprom, Suparat
    Pholasa, Nattawut
    Cholamjiak, Prasit
    NUMERICAL ALGORITHMS, 2020, 84 (03) : 997 - 1017