共 34 条
[1]
Abowd J. M., The Challenge of Scientific Reproducibility and Privacy Protection for Statistical Agencies, (2016)
[2]
Alon N., Beimel A., Moran S., Stemmer U., Closure properties for private classification and online prediction, Proc. Mach. Learn. Res, 125, pp. 119-152, (2020)
[3]
Alon N., Livni R., Malliaris M., Moran S., Private PAC learning implies finite littlestone dimension, CoRR, (2018)
[4]
Bassily R., Thakurta A. G., Thakkar O. D., Model-agnostic private learning, Proceedings of the Conference on Neural Information Processing Systems, pp. 7102-7112, (2018)
[5]
Beimel A., Kasiviswanathan S. P., Nissim K., Bounds on the sample complexity for private learning and private data release, Theory of Cryptography Conference, Lecture Notes in Computer Science, 5978, pp. 437-454, (2010)
[6]
Beimel A., Nissim K., Stemmer U., Characterizing the sample complexity of private learners, Proceedings of the Conference on Innovations in Theoretical Computer Science, pp. 97-110, (2013)
[7]
Beimel A., Nissim K., Stemmer U., Private learning and sanitization: Pure vs. approximate differential privacy, APPROX-RANDOM, Lecture Notes in Computer Science, 8096, pp. 363-378, (2013)
[8]
Beimel A., Nissim K., Stemmer U., Learning privately with labeled and unlabeled examples, Proceedings of the Symposium on Discrete Algorithms, SIAM, pp. 461-477, (2015)
[9]
Blumer A., Ehrenfeucht A., Haussler D., Warmuth M. K., Learnability and the Vapnik-Chervonenkis dimension, J. ACM, 36, pp. 929-965, (1989)
[10]
Bun M., Livni R., Moran S., An equivalence between private classification and online prediction, Proceedings of the Symposium on Foundations of Computer Science, pp. 389-402, (2020)