Modeling and optimization of numerical studies on CuSbS2 thin film solar cell with ∼ 15% efficiency

被引:10
作者
Prakash K. [1 ,2 ]
Valeti N.J. [1 ]
Indraja B. [1 ]
Singha M.K. [3 ]
机构
[1] Dept. of Electronics and Communication, SRM University AP, Andhra Pradesh
[2] Dept. of Computer Science, NRI Institute of Technology, Andhra Pradesh
[3] Dept. of Electronics and Communication, University of Allahabad
来源
Optik | 2024年 / 300卷
关键词
Absorber; CuSbS[!sub]2[!/sub] Thin film solar cell; Power conversion efficiency; Silvaco TCAD; Temperature;
D O I
10.1016/j.ijleo.2024.171632
中图分类号
学科分类号
摘要
In this paper, the Silvaco TCAD simulation tool is utilized for modeling of ternary chalcostibite copper antimony sulfide (CuSbS2) thin film solar cells (TFSCs). The earth-abundant CuSbS2 is a promising material as a solar absorber and hole transport layer due to its high optical absorption coefficient, and low cost. CuSbS2 based solar cell can be fabricated in vacuum-free environment. Mostly CdS is used as electron transport layer (ETL) in CuSbS2 based solar cell but the efficiency is low due to creation of Schottky barrier at the back-contact and substantial carrier recombination at the CuSbS2/CdS interface. Hence, a (ITO/n-TiO2/p-CuSbS2/Au) np heterojunction-based solar cell has been developed. The observed maximum power conversion efficiency (PCE) of 15.26% (open circuit voltage (Voc) = 823 mV, short circuit current (Jsc) = 28.48 mA/cm2, fill factor (FF) = 65.1%) is achieved by optimizing the absorber thickness (400 nm) of the solar cell. Different parameters like effect of absorber thickness, back contact, bandgap, carrier concentration, temperature, and defect density are optimized to find the best possible efficiency of the solar cell. The device also exhibits good performance stability at high temperatures. Based on results, a (ITO/n-TiO2/p-CuSbS2/Au) np heterojunction-based fabricated solar cell device is possible in future. © 2024 Elsevier GmbH
引用
收藏
相关论文
共 73 条
[11]  
Conings B., Drijkoningen J., Gauquelin N., Babayigit A., D'Haen J., D'Olieslaeger L., Ethirajan A., Verbeeck J., Manca J., Mosconi E., De Angelis F., Boyen H.G., Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5, 15, (2015)
[12]  
Jyothi N., Prakash K., Kumar M., Materials Today: Proceedings Device simulation of CH 3 NH 3 PbI 3-x Cl x based mixed halide perovskite thin film solar cells, Mater. Today Proc., pp. 3-8, (2023)
[13]  
Hossain M.K., Toki G.F.I., Kuddus A., Mohammed M.K.A., Pandey R., Madan J., Bhattarai S., Rahman F., Dwivedi D.K., Amami M., Bencherif H., Samajdar D.P., Optimization of the architecture of lead-free CsSnCl 3 -perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study, Mater. Chem. Phys., 308, (2023)
[14]  
Britt J., Ferekides C., Thin-film CdS/CdTe solar cell with 15.8% efficiency, Appl. Phys. Lett., 62, 22, pp. 2851-2852, (1993)
[15]  
Siebentritt S., Igalson M., Persson C., Lany S., The electronic structure of chalcopyrites - Bands, point defects and grain boundaries, Prog. Photovolt. Res. Appl., 18, 6, pp. 390-410, (2010)
[16]  
Vidal J., Lany S., D'Avezac M., Zunger A., Zakutayev A., Francis J., Tate J., Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl. Phys. Lett., 100, 3, (2012)
[17]  
Kumar M., Persson C., CuSbS2 and CuBiS2 as potential absorber materials for thin-film solar cells, J. Renew. Sustain. Energy, 5, 3, (2013)
[18]  
Atowar Rahman M., Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL, Sol. Energy, 215, pp. 64-76, (2021)
[19]  
Rahman M.A., Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D, SN Appl. Sci., 3, 2, (2021)
[20]  
Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X., Solar cell efficiency tables (version 57), Prog. Photovolt. Res. Appl., 29, 1, pp. 3-15, (2021)