Adaptive Graph Convolutional Networks for Weakly Supervised Anomaly Detection in Videos

被引:0
|
作者
Cao, Congqi [1 ]
Zhang, Xin [1 ]
Zhang, Shizhou [1 ]
Wang, Peng [1 ]
Zhang, Yanning [1 ]
机构
[1] The ASGO National Engineering Laboratory, School of Computer Science, Northwestern Polytechnical University, Xi’an,710129, China
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
'current - Adaptive learning - Anomaly detection - Contextual information - Contextual relationships - Convolutional networks - Graph convolutional network - Temporal models - Video representations - Video segments
引用
收藏
相关论文
共 50 条
  • [41] Anomaly graph: leveraging dynamic graph convolutional networks for enhanced video anomaly detection in surveillance and security applications
    Chiranjeevi V.R.
    Malathi D.
    Neural Computing and Applications, 2024, 36 (20) : 12011 - 12028
  • [42] Supervised anomaly detection by convolutional sparse representation
    Pourhashemi, R.
    Mahmoudzadeh, E.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 31493 - 31508
  • [43] Supervised anomaly detection by convolutional sparse representation
    R. Pourhashemi
    E. Mahmoudzadeh
    Multimedia Tools and Applications, 2022, 81 : 31493 - 31508
  • [44] Explainable monotonic networks and constrained learning for interpretable classification and weakly supervised anomaly detection
    Wargnier-Dauchelle, Valentine
    Grenier, Thomas
    Durand-Dubief, Francoise
    Cotton, Francois
    Sdika, Michael
    PATTERN RECOGNITION, 2025, 160
  • [45] Spatio-temporal graph-based CNNs for anomaly detection in weakly-labeled videos
    Mu, Huiyu
    Sun, Ruizhi
    Wang, Miao
    Chen, Zeqiu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [46] Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
    Pathak, Deepak
    Kraehenbuehl, Philipp
    Darrell, Trevor
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1796 - 1804
  • [47] Prototype Generation Based Shift Graph Convolutional Network for Semi-supervised Anomaly Detection
    Cui, Tao
    Song, Wenyu
    An, Gaoyun
    Ruan, Qiuqi
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 159 - 169
  • [48] Weakly Supervised Deep Detection Networks
    Bilen, Hakan
    Vedaldi, Andrea
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2846 - 2854
  • [49] Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection
    Zhou, Yingjie
    Song, Xucheng
    Zhang, Yanru
    Liu, Fanxing
    Zhu, Ce
    Liu, Lingqiao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2454 - 2465
  • [50] Weakly supervised anomaly detection based on sparsity prior
    Wang, Kaixuan
    Zhang, Shixiong
    Cao, Yang
    Yang, Lu
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3728 - 3741