Wave fields under the influence of a random-driven force: The Burgers equation

被引:0
作者
Flamarion, Marcelo V. [1 ]
Pelinovsky, Efim [2 ,3 ,4 ]
Makarov, Denis V. [4 ]
机构
[1] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Matemat, Ave Univ 1801, Lima 15088, Peru
[2] Gaponov Grekhov Inst Appl Phys, Nizhnii Novgorod 603122, Russia
[3] HSE Univ, Fac Informat Math & Comp Sci, Nizhnii Novgorod 603155, Russia
[4] Russian Acad Sci, VIIlichev Pacific Oceanol Inst, Far Eastern Branch, Vladivostok, Russia
关键词
SOLITARY WAVE; KDV SOLITON; RECURRENCE; DYNAMICS;
D O I
10.1016/j.physleta.2024.130000
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we examine the classical Burgers equation and investigate the effects of a random force on the wave field. Two scenarios are considered: the impact of a random force on different wave fields within the viscous Burgers equation and the effect of a periodic random force in the inviscid Burgers equation. For the first case, we demonstrate that the random force primarily causes wave fronts to increase or decrease depending on the dispersion parameter. For an initially deformed sinusoidal wave, the external force causes the mean wave field to spread out and dampen over time. The Cole-Hopf transformation is also used to obtain asymptotically the averaged wave field in certain regimes. For the inviscid problem, we assume the random force to be periodic with random phase to show that the mean wave field corresponds to the solution of the classical inviscid Burgers equation without external forces.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] Analytical solutions to (modified) Korteweg-de Vries-Zakharov-Kuznetsov equation and modeling ion-acoustic solitary, periodic, and breather waves in auroral magnetoplasmas
    Alhejaili, Weaam
    Roy, Subrata
    Raut, Santanu
    Roy, Ashim
    Salas, Alvaro H.
    Aboelenen, Tarek
    El-Tantawy, S. A.
    [J]. PHYSICS OF PLASMAS, 2024, 31 (08)
  • [2] Benjamin T.B, 1967, J. Fluid Mech., V295, P381
  • [3] The Fermi-Pasta-Ulam problem: Fifty years of progress
    Berman, GP
    Izrailev, FM
    [J]. CHAOS, 2005, 15 (01)
  • [4] Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
  • [5] Lump-soliton, rogue-soliton interaction solutions of an evolution model for magnetized Rossby waves
    Cao, Na
    Yin, Xiao-Jun
    Bai, Shu-Ting
    Xu, Li-Yang
    [J]. NONLINEAR DYNAMICS, 2024, 112 (11) : 9367 - 9389
  • [6] Parametric analysis of dust ion acoustic waves in superthermal plasmas through non-autonomous KdV framework
    Chadha, Naresh M.
    Tomar, Shruti
    Raut, Santanu
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 123
  • [7] KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION
    CHEKHLOV, A
    YAKHOT, V
    [J]. PHYSICAL REVIEW E, 1995, 51 (04) : R2739 - R2742
  • [8] Numerical simulation of the stochastic Korteweg-de Vries equation
    Debussche, A
    Printems, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (02) : 200 - 226
  • [9] Soliton interaction with external forcing within the Korteweg-de Vries equation
    Ermakov, Andrei
    Stepanyants, Yury
    [J]. CHAOS, 2019, 29 (01)
  • [10] Fermi E., 1955, Physics Report