Open Data-Driven Automation of Residential Distribution Grid Modeling With Minimal Data Requirements

被引:1
作者
Weber, Moritz [1 ]
Janecke, Luc [1 ]
Cakmak, Huseyin K. [1 ]
Hagenmeyer, Veit [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76344 Eggenstein Lopoldshafen, Germany
关键词
Buildings; Load modeling; Data models; Estimation; Soft sensors; Topology; Transformers; Model generation; open data; open-source software; optimization; distribution grid; grid capacity analysis;
D O I
10.1109/TSG.2024.3406765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the present paper, we introduce a new method for the automated generation of residential distribution grid models based on novel building load estimation methods and a two-stage optimization for the generation of the 20 kV and 400 V grid topologies. Using the introduced load estimation methods, various open or proprietary data sources can be utilized to estimate the load of residential buildings. These data sources include available building footprints from OpenStreetMap, 3D building data from OSM Buildings, and the number of electricity meters per address provided by the respective distribution system operator (DSO). For the evaluation of the introduced methods, we compare the resulting grid models by utilizing different available data sources for a specific suburban residential area and the real grid topology provided by the DSO. This evaluation yields two key findings: First, the automated 20 kV network generation methodology works well when compared to the real network. Second, the utilization of public 3D building data for load estimation significantly increases the resulting model accuracy compared to 2D data and enables results similar to models based on DSO-supplied meter data. This substantially reduces the dependence on such normally proprietary data.
引用
收藏
页码:5721 / 5732
页数:12
相关论文
共 28 条
[1]   The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems [J].
Amme, J. ;
Plessmann, G. ;
Buehler, J. ;
Huelk, L. ;
Koetter, E. ;
Schwaegerl, P. .
SCIGRID INTERNATIONAL CONFERENCE ON POWER GRID MODELLING, 2018, 977
[2]  
[Anonymous], 2004, Bund der Energieverbraucher
[3]  
[Anonymous], 1976, Rep. AD-A025 602
[4]  
Bandam A., 2021, P IEEE PES INN SMART, P1
[5]  
Cakmak H. K., 2022, P IEEE PES INN SMART, P1
[6]   Using Open Data for Modeling and Simulation of the All Electrical Society in eASiMOV [J].
Cakmak, Huseyin K. ;
Hagenmeyer, Veit .
2022 OPEN SOURCE MODELLING AND SIMULATION OF ENERGY SYSTEM (OSMSES), 2022,
[7]  
github, OSMBuildings developers
[8]   Distribution Network Model Platform: A First Case Study [J].
Grzanic, Mirna ;
Flammini, Marco Giacomo ;
Prettico, Giuseppe .
ENERGIES, 2019, 12 (21)
[9]  
Gwisdorf B., 2012, Dena-Verteilnetzstudie: Ausbau-und innovationsbedarf der stromverteilnetze in deutschland bis 2030
[10]  
Institut fir Kirche und Gesellschaft der Ev. Landeskirche von Westfalen, 2019, Energie-Bericht Ev.-luth. Kirchengemeinde Vahrenwald fir das Jahr 2019