Agile product engineering through continuous validation in PGE-Product Generation Engineering

被引:14
作者
Albers A. [1 ]
Behrendt M. [1 ]
Klingler S. [1 ]
Reiß N. [1 ]
Bursac N. [1 ]
机构
[1] IPEK-Institute of Product Engineering, Karlsruhe Institute of Technology (KIT)
关键词
IPEK-XiL; iPeM; PGEÂ-Â Product Generation Engineering; validation;
D O I
10.1017/dsj.2017.5
中图分类号
学科分类号
摘要
Most products are developed in generations. This needs to be considered with regard to development methods and processes to make existing knowledge available to achieve increased efficiency. To realize this, the approach of PGE-product generation engineering-is formulated. Product generation engineering is understood as the development of products based on reference products (precursor or competitor products). The subsystems are either adapted to the new product generation by means of carryover or they are newly developed based on shape variation or principle variation. Validation is considered as the central activity in the product engineering process and is a major challenge, especially for complex mechatronic systems. Therefore, it is important to understand validation as an ongoing activity during product development. The pull principle of validation describes the definition and development of validation activities, including models and validation environments based on specific validation objectives. In order to have effectiveness within validation of subsystems, it is necessary to map the interactions with the overall system, namely the super-system. The relevant subsystems can be connected under consideration of functional and energetic aspects by means of virtual, physical or mixed virtual-physical modeling applied by the holistic IPEK-X-in-The-Loop approach within the integrated Product engineering Model (iPeM). Copyright © The Author(s) 2017.
引用
收藏
相关论文
共 50 条
[1]  
Albers A., Five hypotheses about engineering processes and their consequences, Proceedings of the TMCE 2010, Ancona, (2010)
[2]  
Albers A., Behrendt M., Brezger F., Matros K., Steiger B., Holzer H., Bohne W., Definition and implementation of a benchmarking in order to derive success factors of hybrid powertrains, 14 Internationales Stuttgarter Symposium 'Automobilund Motorentechnik', (2014)
[3]  
Albers A., Behrendt M., Klingler S., Matros K., Verifikation und Validierung im Produktentstehungsprozess, Handbuch Produktentwicklung, Carl Hanser, (2016)
[4]  
Albers A., Braun A., Der prozess der produktentstehung, Handbuch Leichtbau, pp. 5-30, (2011)
[5]  
Albers A., Braun A., Muschik S., Ein beitrag zum verständnis des aktivitätsbegris im system der produktentstehung, Tag des Systems Engineering, Mönchen, (2010)
[6]  
Albers A., Burkardt N., Meboldt M., Saak M., SPALTEN problem solving methodology in the product development, ICED 05: 15th International Conference on Engineering Design: Engineering Design and the Global Economy, Engineers Australia, (2005)
[7]  
Albers A., Bursac N., Urbanec J., Lodcke R., Rachenkova G., Knowledge Management in Product Generation Development-An Empirical Study, pp. 13-24, (2014)
[8]  
Albers A., Bursac N., Wintergerst E., Product generation development-importance and challenges from a design research perspective, New Developments in Mechanics and Mechanical Engineering, pp. 16-21, (2015)
[9]  
Albers A., Bursac N., Wintergerst E., Produktgenerationsentwicklung-Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive, Stuttgarter Symposium för Produktentwicklung 2015 SSP 2015, Stuttgart, (2015)
[10]  
Albers A., Matros K., Behrendt M., Bohne W., Ars H., Darstellung und Bewertung von Hybridantrieben mit einem Hybrid-Erlebnis-Prototypen, VPCplus Simulation und Test för Die Antriebsentwicklung, 16 MTZ-Fachtagung, (2014)