Unsupervised domain adaptation multi-level adversarial learning-based crossing-domain retinal vessel segmentation

被引:2
|
作者
Liu J. [1 ]
Zhao J. [1 ]
Xiao J. [1 ]
Zhao G. [1 ]
Xu P. [1 ]
Yang Y. [2 ,3 ]
Gong S. [4 ]
机构
[1] College of Information Science and Engineering, Hunan Normal University, Hunan, Changsha
[2] School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha
[3] College of Computer and Artificial Intelligence (Software College), Huaihua University, Hunan, Huaihua
[4] Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha
基金
中国国家自然科学基金;
关键词
Multilevel adversarial learning; Pseudo label denoising; Retinal vessel segmentation; Unsupervised domain adaptation;
D O I
10.1016/j.compbiomed.2024.108759
中图分类号
R96 [药理学]; R3 [基础医学]; R4 [临床医学];
学科分类号
1001 ; 1002 ; 100602 ; 100706 ;
摘要
Background: The retinal vasculature, a crucial component of the human body, mirrors various illnesses such as cardiovascular disease, glaucoma, and retinopathy. Accurate segmentation of retinal vessels in funduscopic images is essential for diagnosing and understanding these conditions. However, existing segmentation models often struggle with images from different sources, making accurate segmentation in crossing-source fundus images challenging. Methods: To address the crossing-source segmentation issues, this paper proposes a novel Multi-level Adversarial Learning and Pseudo-label Denoising-based Self-training Framework (MLAL&PDSF). Expanding on our previously proposed Multiscale Context Gating with Breakpoint and Spatial Dual Attention Network (MCG&BSA-Net), MLAL&PDSF introduces a multi-level adversarial network that operates at both the feature and image layers to align distributions between the target and source domains. Additionally, it employs a distance comparison technique to refine pseudo-labels generated during the self-training process. By comparing the distance between the pseudo-labels and the network predictions, the framework identifies and corrects inaccuracies, thus enhancing the accuracy of the fine vessel segmentation. Results: We have conducted extensive validation and comparative experiments on the CHASEDB1, STARE, and HRF datasets to evaluate the efficacy of the MLAL&PDSF. The evaluation metrics included the area under the operating characteristic curve (AUC), sensitivity (SE), specificity (SP), accuracy (ACC), and balanced F-score (F1). The performance results from unsupervised domain adaptive segmentation are remarkable: for DRIVE to CHASEDB1, results are AUC: 0.9806, SE: 0.7400, SP: 0.9737, ACC: 0.9874, and F1: 0.8851; for DRIVE to STARE, results are AUC: 0.9827, SE: 0.7944, SP: 0.9651, ACC: 0.9826, and F1: 0.8326. Conclusion: These results demonstrate the effectiveness and robustness of MLAL&PDSF in achieving accurate segmentation results from crossing-domain retinal vessel datasets. The framework lays a solid foundation for further advancements in cross-domain segmentation and enhances the diagnosis and understanding of related diseases. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [11] Adversarial Reinforcement Learning for Unsupervised Domain Adaptation
    Zhang, Youshan
    Ye, Hui
    Davison, Brian D.
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 635 - 644
  • [12] Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning
    Liu, Wei
    Luo, Zhiming
    Cai, Yuanzheng
    Yu, Ying
    Ke, Yang
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 : 211 - 221
  • [13] Unsupervised Domain Adaptation Fundus Image Segmentation via Multi-Scale Adaptive Adversarial Learning
    Zhou, Wei
    Ji, Jianhang
    Cui, Wei
    Wang, Yingyuan
    Yi, Yugen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 5792 - 5803
  • [14] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [15] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    Medical Image Analysis, 2022, 82
  • [16] Contrastive Learning-Based Domain Adaptation for Semantic Segmentation
    Bhagwatkar, Rishika
    Kemekar, Saurabh
    Domatoti, Vinay
    Khan, Khursheed Munir
    Singh, Anamika
    2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 239 - 244
  • [17] Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks
    Kamnitsas, Konstantinos
    Baumgartner, Christian
    Ledig, Christian
    Newcombe, Virginia
    Simpson, Joanna
    Kane, Andrew
    Menon, David
    Nori, Aditya
    Criminisi, Antonio
    Rueckert, Daniel
    Glocker, Ben
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 597 - 609
  • [18] Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation
    Zhou, Lihua
    Ye, Mao
    Zhu, Xiatian
    Li, Shuaifeng
    Liu, Yiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4318 - 4326
  • [19] Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation
    Zhao, Xin
    Wang, Shengsheng
    IEEE ACCESS, 2019, 7 : 170448 - 170456
  • [20] Collaborative Adversarial Learning for Unsupervised Federated Domain Adaptation
    Chi, Hao
    Zhang, Yingqi
    Xu, Shuo
    Zhang, Rui
    Xia, Hui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024, 2024, 14885 : 346 - 357