Biomimetic Synthesis of Chloropupukeananin and its Congeners

被引:0
作者
Suzuki T. [1 ]
机构
[1] Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo
来源
Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry | 2024年 / 82卷 / 04期
关键词
asymmetric total synthesis; biomimetics; carbonyl-ene reaction; cascade reaction; Diels-Alder reaction; high pressure reaction; natural products; organocatalyst;
D O I
10.5059/yukigoseikyokaishi.82.336
中图分类号
学科分类号
摘要
Chloropupukeananin was isolated as a natural product with inhibitory activity against HIV-1 replication and antitumor activity. The isolation of its analogues, chloropestolides, chloropupukeanolides, and chlorotheolides, were subsequently reported. These compounds are characterized by highly oxidized multi-functional groups arrayed on a chlorinated bicyclo[2.2.2]octane or tricyclo[4.3.1.03,7]decane skeleton. The biosynthesis of the family of chloropupukeananin natural products starts with intermolecular Diels-Alder reactions using (+)-iso-A82775C and (−)- maldoxin as precursors. Subsequent carbonyl-ene reactions and other transformations further elaborate the complex structures. These unique chemical structures and biosynthetic pathways have prompted us to initiate synthetic studies. In this manuscript, we will present our synthetic studies of chloropupukeananin and related compounds. © 2024 Society of Synthetic Organic Chemistry. All rights reserved.
引用
收藏
页码:336 / 347
页数:11
相关论文
共 24 条
  • [1] Liu L., Liu S., Jiang L., Chen X., Guo L., Che Y., Org. Lett, 10, (2008)
  • [2] Hagadone R., Burreson B. J., Scheuer P. J., Finer J. S., Clardy J., Wolstenholme H. J., Simpson S., Garson M. J., Hooper J. N. A., Cline E. I., Angerhofer C. K., Aust. J. Chem, 97, (1975)
  • [3] Shimada A., Takahashi I., Kawano T., Kimura Y., Naturforsch Z., Ando K., Aotani Y., Shinoda K., Tanaka T., Tsukuda E., Yoshida M., Matsuda Y., Adeboya O., Edwards R. L., Lassoe T., Maitland D. J., Shields L., Whalley A. J. S., J. Chem. Soc., Perkin Trans, 1, (1996)
  • [4] Yamamoto H., Sham H. L., Corey J., Ishiguro M., Wenger J., Chang C., Chang C.-K., Vijaykumar D., Sharma G. V. R., Subba Rao G. S. R., Schiehser A., White J. D., Winter M., Srikrishna P. R. Kumar, Tetrahedron Lett, 101, (1979)
  • [5] Miyajima Y., Suzuki T., Watanabe S., Kobayashi S., Tanino K., Watanabe S., Uyanik M., Ishihara K., Kobayashi S., Tanino K., Watanabe S., Ikeda W., Kobayashi S., Tanino K., J. Org. Chem, 86, (2010)
  • [6] Liu L., Li Y., Liu S., Zheng Z., Chen X., Zhang H., Guo L., Che Y., Bruhn T., Guo L., Gotz D. C., Brun R., Stich A., Che Y., Bringmann G., Liu L., Li Y., Li L., Cao Y., Guo L., Liu G., Che Y., Han Y., Xiao J., Li L., Guo L., Jiang X., Kong L., Che Y., Liu L., Guan F., Li E., Jin J., Li J., Che Y., Liu G., ACS Chem. Biol, 13, (2018)
  • [7] Tsukamoto S., Sherman D. H., Williams R. M., Oikawa H., Jeon S., Wang S. A., Ruszczycky M. W., Liu H. W., Jamieson C. S., Ohashi M., Liu F., Tang Y., Houk K. N., Watanabe J., Watanabe M. Sato, Osada H., Fungal Biol. Biotechnol, 9, (2022)
  • [8] Churcher I., Hallett D., Magnus P., J. Am. Chem. Soc, 120, (1998)
  • [9] Riveiros R., Rodriguez D., Sestelo J. P., Sarandeses L. A., Org. Lett, 8, (2006)
  • [10] Ibuka T., Taga T., Habashita H., Nakai K., Tamamura H., Fujii N., Chounan Y., Nemoto H., Yamamoto Y., J. Org. Chem, 58, (1993)