Variational quantum Crank-Nicolson and method-of-lines schemes for the solution of initial value problems

被引:0
作者
Guzman-Cajica, Francisco [1 ]
Guzman, Francisco S. [2 ]
机构
[1] Univ Michoacana, Fac Ciencias Fis Matemat, Edificio ALFA,Cd Univ, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Inst Fis & Matemat, Edificio C 3,Cd Univ, Morelia 58040, Michoacan, Mexico
关键词
Equations of state - Initial value problems - Nonlinear equations - Variational techniques - Wave equations;
D O I
10.1103/PhysRevA.110.042415
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we use a variational quantum algorithm to solve initial value problems with the implicit CrankNicolson and the method of lines (MoL) evolution schemes. The unknown functions use a spectral decomposition with the Fourier basis. The examples developed to illustrate the implementation are the advection equation, the wave equation written as a system of first-order coupled equations, and the viscous Burgers equation as a nonlinear case. The problems are solved using (i) standard finite differences as the solution to compare with, (ii) the state vector formalism (SVF), and (iii) the sampling error formalism (SEF). The contributions of this paper include (1) cost functions for generic first order in time partial differential equations (PDEs) using the implicit Crank-Nicholson and the MoL, (2) detailed convergence or self-convergence tests are presented for all the equations solved, (3) a system of three coupled PDEs is solved, (4) solutions using sampling error are presented, which highlights the importance of simulating the sampling process, and (5) a fast version of the SVF and SEF was developed which can be used to test different optimizers faster.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] Amaro O, 2023, Arxiv, DOI arXiv:2302.00001
  • [2] From Vlasov-Poisson to Schrödinger-Poisson: Dark matter simulation with a quantum variational time evolution algorithm
    Cappelli, Luca
    Tacchino, Francesco
    Murante, Giuseppe
    Borgani, Stefano
    Tavernelli, Ivano
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [3] Variational quantum algorithms
    Cerezo, M.
    Arrasmith, Andrew
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Fujii, Keisuke
    McClean, Jarrod R.
    Mitarai, Kosuke
    Yuan, Xiao
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (09) : 625 - 644
  • [4] Stochastic optimization algorithms for quantum applications
    Gidi, J.
    Candia, B.
    Munoz-Moller, A. D.
    Rojas, A.
    Pereira, L.
    Munoz, M.
    Zambrano, L.
    Delgado, A.
    [J]. PHYSICAL REVIEW A, 2023, 108 (03)
  • [5] github, About us
  • [6] Guzman F. S., 2023, Numerical Methods for Initial Value Problems in Physics, V1st
  • [7] Guzman-Cajica F., QCIVPs
  • [8] Javadi-Abhari A, 2024, Arxiv, DOI arXiv:2405.08810
  • [9] Kay A, 2020, Arxiv, DOI [arXiv:1809.03842, DOI 10.17637/RH.7000520]
  • [10] Solving nonlinear differential equations with differentiable quantum circuits
    Kyriienko, Oleksandr
    Paine, Annie E.
    Elfving, Vincent E.
    [J]. PHYSICAL REVIEW A, 2021, 103 (05)