Effect of sulfurization time on properties of CZTS thin films by solid-state sulfurization

被引:0
|
作者
Cao Z.-M. [1 ]
Yang Y.-Z. [1 ]
Xu J.-X. [1 ]
Xie Z.-W. [1 ]
机构
[1] School of Materials and Energy, Guangdong University of Technology, Guangzhou
来源
Yang, Yuan-Zheng (yangyz@gdut.edu.cn) | 1600年 / Beijing Institute of Aeronautical Materials (BIAM)卷 / 44期
关键词
CZTS thin film; Magnetron sputtering; Solid-state sulfurization; Sulfurization time;
D O I
10.11868/j.issn.1001-4381.2016.09.010
中图分类号
学科分类号
摘要
Cu2ZnSnS4 (CZTS) thin films were prepared by solid-state sulfurizing Cu-Zn-Sn(CZT) metallic precursors. The effect of sulfurization time on phases, chemical composition, surface morphology and optical properties was investigated by X-ray diffraction (XRD), Raman spectrum, energy dispersive of X-ray (EDS), scanning electron microscope (SEM) and UV-Vis, respectively. The results show that with the sulfurization time and content of Cu increase, Zn particularly decreases. The films that sulfurized over 40min occur with impurities like SnS, Sn2S3 and Cu2SnS3, which lead smaller optical band gap. When the sulfurization time is 20min, the sample is single phase CZTS thin film, which surface is uniform and even, Cu-poor and Sn-rich. The absorption coefficient is over 104cm-1. The band gap energy is estimated 1.56eV. © 2016, Journal of Materials Engineering. All right reserved.
引用
收藏
页码:63 / 67
页数:4
相关论文
共 22 条
  • [1] Fan Y., Qin H.L., Mi B.X., Et al., Progress in the fabrication of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin film for solar cells, Acta Chimica Sinica, 72, 6, pp. 643-652, (2014)
  • [2] Todorov T.K., Tang J., Bag S., Et al., Beyond 11% efficiency:characteristics of state-of-the-art Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> solar cells, Advanced Energy Materials, 3, 1, pp. 34-38, (2013)
  • [3] Wang W., Winkler M.T., Gunawan O., Et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Advanced Energy Materials, 4, 7, pp. 403-410, (2014)
  • [4] Shin B., Gunawan O., Zhu Y., Et al., Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu<sub>2</sub>ZnSnS<sub>4</sub> absorber, Progress in Photovoltaics: Research and Applications, 21, 1, pp. 72-76, (2013)
  • [5] Guo L., Zhu Y., Gunawan O., Et al., Electrodeposited Cu<sub>2</sub>ZnSnSe<sub>4</sub> thin film solar cell with 7% power conversion efficiency, Progress in Photovoltaics: Research and Applications, 22, 1, pp. 58-68, (2014)
  • [6] He X.C., Hao Y., Pi J.H., Et al., Quaternary co-electrodeposition mechanism and annealing phase transition of synthesized Cu<sub>2</sub>ZnSnS<sub>4</sub> films, Journal of Materials Engineering, 43, 4, pp. 66-72, (2015)
  • [7] Mali S.S., Shinde P.S., Betty C.A., Et al., Synthesis and characterization of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films by SILAR method, Journal of Physics and Chemistry of Solids, 73, 6, pp. 735-740, (2012)
  • [8] Bhosalea S.M., Suryawanshia M.P., Gaikwada M.A., Et al., Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique, Materials Letters, 129, 1, pp. 153-155, (2014)
  • [9] Pawar S.M., Inamdar A.I., Gurav K.V., Et al., Growth of void free Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) thin films by sulfurization of stacked metallic precursor films, Vacuum, 104, 1, pp. 57-60, (2014)
  • [10] Araki H., Mikaduki A., Kubo Y., Et al., Preparation of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films by sulfurization of stacked metallic layers, Thin Solid Films, 517, 4, pp. 1457-1460, (2008)