Smoothing Methods for Histogram-Valued Time Series: An Application to Value-at-Risk

被引:11
|
作者
Arroyo J. [1 ]
González-Rivera G. [2 ]
Maté C. [3 ]
San Roque A.M. [3 ]
机构
[1] Departamento de Ingeniería del Software e Inteligencia Artificial, Universidad Complutense de Madrid
[2] Department of Economics, University of California, Riverside
[3] Instituto de Investigación Tecnológica, Universidad Pontificia Comillas
来源
Statistical Analysis and Data Mining | 2011年 / 4卷 / 02期
关键词
Barycenter; Exponential smoothing; High-frequency data; Symbolic data; Value-at-risk;
D O I
10.1002/sam.10114
中图分类号
学科分类号
摘要
We adapt smoothing methods to histogram-valued time series (HTS) by introducing a barycentric histogram that emulates the "average" operation, which is the key to any smoothing filter. We show that, due to its linear properties, only the Mallows-barycenter is acceptable if we wish to preserve the essence of any smoothing mechanism. We implement a barycentric exponential smoothing to forecast the HTS of daily histograms of intradaily returns to both the SP500 and the IBEX 35 indexes. We construct a one-step-ahead histogram forecast, from which we retrieve a desired γ-value-at-risk (VaR) forecast. In the case of the SP500 index, a barycentric exponential smoothing delivers a better forecast, in the MSE sense, than those derived from vector autoregression models, especially for the 5% VaR. In the case of IBEX35, the forecasts from both methods are equally good. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
引用
收藏
页码:216 / 228
页数:12
相关论文
共 50 条
  • [1] Histogram-valued data on value at risk measures: a symbolic approach for risk attribution
    Toque, Carole
    Terraza, Virginie
    APPLIED ECONOMICS LETTERS, 2014, 21 (17) : 1243 - 1251
  • [2] Time series modeling of histogram-valued data: The daily histogram time series of S&P500 intradaily returns
    Gonzalez-Rivera, Gloria
    Arroyo, Javier
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) : 20 - 33
  • [3] Composite likelihood methods for histogram-valued random variables
    Whitaker, T.
    Beranger, B.
    Sisson, S. A.
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1459 - 1477
  • [4] Composite likelihood methods for histogram-valued random variables
    T. Whitaker
    B. Beranger
    S. A. Sisson
    Statistics and Computing, 2020, 30 : 1459 - 1477
  • [5] Comment on: "Time series modeling of histogram-valued data: The daily histogram time series of S&P500 intradaily returns" by Gloria Gonzalez-Rivera and Javier Arroyo
    Nicolau, Joao
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) : 34 - 35
  • [6] Risk Valuation of Precious Metal Returns by Histogram Valued Time Series
    Rakpho, Pichayakone
    Yamaka, Woraphon
    Tansuchat, Roengchai
    PREDICTIVE ECONOMETRICS AND BIG DATA, 2018, 753 : 549 - 562
  • [7] Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment
    Zhang, Feipeng
    Xu, Yixiong
    Fan, Caiyun
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2023, 90
  • [8] Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review
    Hong, L. Jeff
    Hu, Zhaolin
    Liu, Guangwu
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (04):
  • [9] Forecasting time series of observed distributions with smoothing methods based on the barycentric histogram
    Arroyo, J.
    Mate, C.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 61 - 66
  • [10] Exponential smoothing methods for forecasting bar diagram-valued time series
    De Araujo Junior, C. A. G.
    de Carvalho, F. A. T.
    Santiago Maia, Andre Luis
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1361 - 1366