Damage Scene Change Detection Based on Infrared Polarization Imaging and Fast-PCANet

被引:0
作者
Yang, Min [1 ]
Yang, Jie [2 ]
Mao, Hongxia [1 ]
Zheng, Chong [1 ]
机构
[1] Natl Key Lab Scattering & Radiat, Beijing 100854, Peoples R China
[2] China Agr Univ, Coll Informat & Elect Engn, Beijing 100091, Peoples R China
关键词
infrared polarization imaging; Fast-PCANet; damage scene; change detection; CHANGE VECTOR ANALYSIS;
D O I
10.3390/rs16193559
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection based on optical image processing plays a crucial role in the field of damage assessment. Although existing damage scene change detection methods have achieved some good results, they are faced with challenges, such as low accuracy and slow speed in optical image change detection. To solve these problems, an image change detection approach that combines infrared polarization imaging with a fast principal component analysis network (Fast-PCANet) is proposed. Firstly, the acquired infrared polarization images are analyzed, and pixel image blocks are extracted and filtered to obtain the candidate change points. Then, the Fast-PCANet network framework is established, and the candidate pixel image blocks are sent to the network to detect the change pixel points. Finally, the false-detection points predicted by the Fast-PCANet are further corrected by region filling and filtering to obtain the final binary change map of the damage scene. Comparisons with typical PCANet-based change detection algorithms are made on a dataset of infrared-polarized images. The experimental results show that the proposed Fast-PCANet method improves the PCC and the Kappa coefficient of infrared polarization images over infrared intensity images by 6.77% and 13.67%, respectively. Meanwhile, the inference speed can be more than seven times faster. The results verify that the proposed approach is effective and efficient for the change detection task with infrared polarization imaging. The study can be applied to the damage assessment field and has great potential for object recognition, material classification, and polarization remote sensing.
引用
收藏
页数:13
相关论文
共 28 条
  • [1] Analysis on change detection techniques for remote sensing applications: A review
    Afaq, Yasir
    Manocha, Ankush
    [J]. ECOLOGICAL INFORMATICS, 2021, 63
  • [2] Change detection techniques for remote sensing applications: a survey
    Asokan, Anju
    Anitha, J.
    [J]. EARTH SCIENCE INFORMATICS, 2019, 12 (02) : 143 - 160
  • [3] Deep learning for change detection in remote sensing: a review
    Bai, Ting
    Wang, Le
    Yin, Dameng
    Sun, Kaimin
    Chen, Yepei
    Li, Wenzhuo
    Li, Deren
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2023, 26 (03) : 262 - 288
  • [4] A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01): : 218 - 236
  • [5] Change Detection of Amazonian Alluvial Gold Mining Using Deep Learning and Sentinel-2 Imagery
    Camalan, Seda
    Cui, Kangning
    Pauca, Victor Paul
    Alqahtani, Sarra
    Silman, Miles
    Chan, Raymond
    Plemmons, Robert Jame
    Dethier, Evan Nylen
    Fernandez, Luis E.
    Lutz, David A.
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [6] Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering
    Celik, Turgay
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) : 772 - 776
  • [7] PCANet: A Simple Deep Learning Baseline for Image Classification?
    Chan, Tsung-Han
    Jia, Kui
    Gao, Shenghua
    Lu, Jiwen
    Zeng, Zinan
    Ma, Yi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5017 - 5032
  • [8] Remote Sensing Image Change Detection With Transformers
    Chen, Hao
    Qi, Zipeng
    Shi, Zhenwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Comparison of the inversion periods for MidIR and LWIR polarimetric and conventional thermal imagery
    Felton, M.
    Gurton, K. P.
    Pezzaniti, J. L.
    Chenault, D. B.
    Roth, L. E.
    [J]. POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING IX, 2010, 7672
  • [10] Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet
    Gao, Feng
    Dong, Junyu
    Li, Bo
    Xu, Qizhi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1792 - 1796