共 79 条
Donor-acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy
被引:64
作者:
Chaudhari, Sachin R.
[1
]
Griffin, John M.
[2
,3
]
Broch, Katharina
[4
]
Lesage, Anne
[1
]
Lemaur, Vincent
[5
]
Dudenko, Dmytro
[5
]
Olivier, Yoann
[5
]
Sirringhaus, Henning
[4
]
Emsley, Lyndon
[6
]
Grey, Clare P.
[3
]
机构:
[1] Univ Lyon, CNRS ENS Lyon UCB Lyon 1, Inst Sci Analyt, Ctr RMN, F-69100 Villeurbanne, France
[2] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[3] Univ Cambridge, Dept Chem, Lens eld Rd, Cambridge CB2 1EW, England
[4] Univ Cambridge, Cavendish Lab, Optoelectron Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[5] Univ Mons UMons, Ctr Innovat & Res Mat & Polymers CIRMAP, Lab Chem Novel Mat, 20 Pl Parc, B-7000 Mons, Belgium
[6] Ecole Polytech Federale Lausanne EPFL, Inst Sci & Ingenierie Chim, CH-1015 Lausanne, Switzerland
基金:
英国工程与自然科学研究理事会;
欧洲研究理事会;
欧盟地平线“2020”;
关键词:
DYNAMIC NUCLEAR-POLARIZATION;
FIELD-EFFECT TRANSISTORS;
AMBIPOLAR CHARGE-TRANSPORT;
HIGH-PERFORMANCE AMBIPOLAR;
NATURAL-ABUNDANCE;
RESONANCE;
COPOLYMER;
PACKING;
SEMICONDUCTOR;
ELUCIDATION;
D O I:
10.1039/c7sc00053g
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Conjugated polymers show promising properties as cheap, sustainable and solution-processable semiconductors. A key challenge in the development of these materials is to determine the polymer chain structure, conformation and packing in both the bulk polymer and in thin films typically used in devices. However, many characterisation techniques are unable to provide atomic-level structural information owing to the presence of disorder. Here, we use molecular modelling, magic-angle spinning (MAS) and dynamic nuclear polarisation surface-enhanced NMR spectroscopy (DNP SENS) to characterise the polymer backbone group conformations and packing arrangement in the high-mobility donor-acceptor copolymer diketopyrrolo-pyrrole-dithienylthieno[3,2-b] thiophene (DPP-DTT). Using conventional H-1 and C-13 solid-state MAS NMR coupled with density functional theory calculations and molecular dynamics simulations, we find that the bulk polymer adopts a highly planar backbone conformation with a laterally-shifted donor-on-acceptor stacking arrangement. DNP SENS enables acquisition of C-13 NMR data for polymer films, where sensitivity is limiting owing to small sample volumes. The DNP signal enhancement enables a two-dimensional H-1-C-13 HETCOR spectrum to be recorded for a drop-cast polymer film, and a C-13 CPMAS NMR spectrum to be recorded for a spin-coated thin-film with a thickness of only 400 nm. The results show that the same planar backbone structure and intermolecular stacking arrangement is preserved in the films following solution processing and annealing, thereby rationalizing the favourable device properties of DPP-DTT, and providing a protocol for the study of other thin film materials.
引用
收藏
页码:3126 / 3136
页数:11
相关论文