Feedback-based quantum algorithm inspired by counterdiabatic driving

被引:1
作者
Malla, Rajesh K. [1 ]
Sukeno, Hiroki [2 ,3 ]
Yu, Hongye [2 ,3 ]
Wei, Tzu-Chieh [2 ,3 ]
Weichselbaum, Andreas [1 ]
Konik, Robert M. [1 ]
机构
[1] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
IMPLICIT LYAPUNOV CONTROL; EIGENSOLVER;
D O I
10.1103/PhysRevResearch.6.043068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent quantum algorithmic developments, a feedback-based approach has shown promise for preparing quantum many-body system ground states and solving combinatorial optimization problems. This method utilizes quantum Lyapunov control to iteratively construct quantum circuits. Here, we propose a substantial enhancement by implementing a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol, a key concept from quantum adiabaticity. Our approach introduces an additional control field inspired by counterdiabatic driving. We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains. Comprehensive simulations demonstrate a remarkable acceleration in population transfer to low-energy states within a significantly reduced time frame compared to conventional feedback-based quantum algorithms. This acceleration translates to a reduced quantum circuit depth, a critical metric for potential quantum computer implementation. We validate our algorithm on the IBM cloud computer, highlighting its efficacy in expediting quantum computations for many-body systems and combinatorial optimization problems.
引用
收藏
页数:15
相关论文
共 65 条
[11]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[12]   Counterdiabatic Optimized Local Driving [J].
Cepaite, Ieva ;
Polkovnikov, Anatoli ;
Daley, Andrew J. ;
Duncan, Callum W. .
PRX QUANTUM, 2023, 4 (01)
[13]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[14]   Quantum control landscapes [J].
Chakrabarti, Raj ;
Rabitz, Herschel .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :671-735
[15]   Digitized-counterdiabatic quantum approximate optimization algorithm [J].
Chandarana, P. ;
Hegade, N. N. ;
Paul, K. ;
Albarran-Arriagada, F. ;
Solano, E. ;
del Campo, A. ;
Chen, Xi .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[16]   Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity [J].
Chen, Xi ;
Ruschhaupt, A. ;
Schmidt, S. ;
del Campo, A. ;
Guery-Odelin, D. ;
Muga, J. G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (06)
[17]   Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems [J].
Claeys, Pieter W. ;
Pandey, Mohit ;
Sels, Dries ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[18]   Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm [J].
Colless, J. I. ;
Ramasesh, V. V. ;
Dahlen, D. ;
Blok, M. S. ;
Kimchi-Schwartz, M. E. ;
McClean, J. R. ;
Carter, J. ;
de Jong, W. A. ;
Siddiqi, I. .
PHYSICAL REVIEW X, 2018, 8 (01)
[19]   A Survey of Quantum Lyapunov Control Methods [J].
Cong, Shuang ;
Meng, Fangfang .
SCIENTIFIC WORLD JOURNAL, 2013,
[20]   How many qubits are needed for quantum computational supremacy? [J].
Dalzell, Alexander M. ;
Harrow, Aram W. ;
Koh, Dax Enshan ;
La Placa, Rolando L. .
QUANTUM, 2020, 4