Feedback-based quantum algorithm inspired by counterdiabatic driving

被引:1
作者
Malla, Rajesh K. [1 ]
Sukeno, Hiroki [2 ,3 ]
Yu, Hongye [2 ,3 ]
Wei, Tzu-Chieh [2 ,3 ]
Weichselbaum, Andreas [1 ]
Konik, Robert M. [1 ]
机构
[1] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
IMPLICIT LYAPUNOV CONTROL; EIGENSOLVER;
D O I
10.1103/PhysRevResearch.6.043068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent quantum algorithmic developments, a feedback-based approach has shown promise for preparing quantum many-body system ground states and solving combinatorial optimization problems. This method utilizes quantum Lyapunov control to iteratively construct quantum circuits. Here, we propose a substantial enhancement by implementing a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol, a key concept from quantum adiabaticity. Our approach introduces an additional control field inspired by counterdiabatic driving. We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains. Comprehensive simulations demonstrate a remarkable acceleration in population transfer to low-energy states within a significantly reduced time frame compared to conventional feedback-based quantum algorithms. This acceleration translates to a reduced quantum circuit depth, a critical metric for potential quantum computer implementation. We validate our algorithm on the IBM cloud computer, highlighting its efficacy in expediting quantum computations for many-body systems and combinatorial optimization problems.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]  
Anastasiou PG, 2023, Arxiv, DOI arXiv:2306.03227
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Implicit Lyapunov control of finite dimensional Schrodinger equations [J].
Beauchard, Karine ;
Coron, Jean Michel ;
Mirrahimi, Mazyar ;
Rouchon, Pierre .
SYSTEMS & CONTROL LETTERS, 2007, 56 (05) :388-395
[5]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, 10.48550/arXiv.1811.04968, DOI 10.48550/ARXIV.1811.04968]
[6]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[7]   Training Variational Quantum Algorithms Is NP-Hard [J].
Bittel, Lennart ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)
[8]  
Bravo-Prieto C, 2023, QUANTUM-AUSTRIA, V7
[9]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781