Coupled channel analysis of p¯p→π0 π0η , πηη and K+K-π at 900 MeV/c and of ππ -scattering data: The Crystal Barrel Collaboration

被引:0
作者
Albrecht M. [1 ]
Amsler C. [4 ,5 ]
Dünnweber W. [3 ]
Faessler M.A. [3 ]
Heinsius F.H. [1 ]
Koch H. [1 ]
Kopf B. [1 ]
Kurilla U. [1 ,6 ]
Meyer C.A. [2 ]
Peters K. [1 ,6 ]
Pychy J. [1 ]
Qin X. [1 ]
Steinke M. [1 ]
Wiedner U. [1 ]
机构
[1] Ruhr-Universität Bochum, Bochum
[2] Carnegie Mellon University, Pittsburgh, 15213, PA
[3] Ludwig-Maximilians-Universität München, Munich
[4] Physik-Institut der Universität Zürich, Zürich
[5] Stefan Meyer Institute, Austrian Academy of Sciences Vienna, Vienna
[6] GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt
来源
European Physical Journal C | 2020年 / 80卷 / 05期
关键词
49;
D O I
10.1140/epjc/s10052-020-7930-x
中图分类号
学科分类号
摘要
A partial wave analysis of antiproton–proton annihilation data in flight at 900 MeV / c into ππη, πηη and K+K-π is presented. The data were taken at LEAR by the Crystal Barrel experiment in 1996. The three channels have been coupled together with ππ-scattering isospin I = 0 S- and D-wave as well as I = 1 P-wave data utilizing the K-matrix approach. Analyticity is treated using Chew–Mandelstam functions. In the fit all ingredients of the K-matrix, including resonance masses and widths, were treated as free parameters. In spite of the large number of parameters, the fit results are in the ballpark of the values published by the Particle Data Group. In the channel ππη a significant contribution of the spin exotic IG= 1 -JPC= 1 - +π1-wave with a coupling to πη is observed. Furthermore the contributions of ϕ(1020) π and K∗(892) ±K∓ in the channel K+K-π have been studied in detail. The differential production cross section for the two reactions and the spin-density-matrix elements for the ϕ(1020) and K∗(892) ± have been extracted. No spin-alignment is observed for both vector mesons. The spin density matrix elements have been also determined for the spin exotic wave. © 2020, The Author(s).
引用
收藏
相关论文
共 49 条
  • [1] Amsler C., Et al., Crystal barrel collaboration, Phys. Lett. B, 355, (1995)
  • [2] Amsler C., Et al., Crystal barrel collaboration, Eur. Phys. J. C, 23, (2002)
  • [3] Garcia-Martin R., Kaminski R., Pelaez J.R., Ruiz de Elvira J., Yndurain F.J., Phys. Rev. D, 83, (2011)
  • [4] Kopf B., Koch H., Pychy J., Wiedner U., Hyperfine Interact., 229, 1-3, (2014)
  • [5] Abele A., Et al., Crystal barrel collaboration, Phys. Lett. B, 468, (1999)
  • [6] Anisovich A.V., Et al., Crystal barrel collaboration, Phys. Lett. B, 452, (1999)
  • [7] Wilson D.J., Dudek J.J., Edwards R.G., Thomas C.E., Phys. Rev. D, 91, 5, (2015)
  • [8] Tanabashi M., Et al., Particle data group, Phys. Rev. D, 98, 3, (2018)
  • [9] Amsler C., Et al., Crystal barrel collaboration, Eur. Phys. J, C 75, 3, (2015)
  • [10] Baubillier M., De Billy L., Rivoal M., Zitoun R., Vuillemin V., Brenzikofer R., Nucl. Phys. B, 104, (1976)