Near real-time twitter spam detection with machine learning techniques

被引:0
|
作者
Sun N. [1 ]
Lin G. [1 ]
Qiu J. [1 ]
Rimba P. [2 ]
机构
[1] School of Information Technology, Deakin University, Geelong
[2] Data61, CSIRO, Melbourne
关键词
classification; machine learning; Social network security; spam detection;
D O I
10.1080/1206212X.2020.1751387
中图分类号
学科分类号
摘要
The popularity of social media networks, such as Twitter, leads to an increasing number of spamming activities. Researchers employed various machine learning methods to detect Twitter spam. However, majorities of existing researches are limited to theoretically study, few of them can apply detection techniques to real-time scenario. In this paper, we bridge the gap by proposing a near real-time Twitter spam detection system, which provides near real-time tweets data acquisition, light-weight features extraction from a specific Twitter account, training detection model, and online visualizing detection results. In this system, account-based and content-based features are extracted to facilitate spam detection. The models that are applied to our Twitter spam detection system are trained based on 1.5 million public tweets and nine mainstream algorithms. In addition, in order to efficiently reduce training time spent on massive data and save the cost of model updating, a parallel computing technique is introduced to train and update the models in this system. Empirical results verify that the model can achieve satisfactory performance based on our datasets. Furthermore, we implement a near real-time Twitter spam detection system which can better protect users from combating spams. This system also acts as a tweets collection tool, allowing researchers to test the performance of trained classifiers in realistic scenarios. © 2020 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:338 / 348
页数:10
相关论文
共 50 条
  • [41] Practical real-time intrusion detection using machine learning approaches
    Sangkatsanee, Phurivit
    Wattanapongsakorn, Naruemon
    Charnsripinyo, Chalermpol
    COMPUTER COMMUNICATIONS, 2011, 34 (18) : 2227 - 2235
  • [42] A Real-Time Machine Learning Module for Motion Artifact Detection in fNIRS
    Ercan, Renas
    Loureiro, Rui
    Xia, Yunjia
    Yang, Shufan
    Zhao, Yunyi
    Zhao, Hubin
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [43] Real-Time Machine Learning for Air Quality and Environmental Noise Detection
    Shah, Sayed Khushal
    Tariq, Zeenat
    Lee, Jeehwan
    Lee, Yugyung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3506 - 3513
  • [44] Spam2Vec: Learning Biased Embeddings for Spam Detection in Twitter
    Maity, Suman Kalyan
    Santosh, K. C.
    Mukherjee, Arjun
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 63 - 64
  • [45] Real-Time Framework for Malware Detection Using Machine Learning Technique
    Mukesh, Sharma Divya
    Raval, Jigar A.
    Upadhyay, Hardik
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS (ICTIS 2017) - VOL 1, 2018, 83 : 173 - 182
  • [46] Adaptive Real-time Trojan Detection Framework through Machine Learning
    Kulkarni, Amey
    Pino, Youngok
    Mohsenin, Tinoosh
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL SYMPOSIUM ON HARDWARE ORIENTED SECURITY AND TRUST (HOST), 2016, : 120 - 123
  • [47] An Automated Machine Learning Approach for Real-Time Fault Detection and Diagnosis
    Leite, Denis
    Martins, Aldonso, Jr.
    Rativa, Diego
    De Oliveira, Joao F. L.
    Maciel, Alexandre M. A.
    SENSORS, 2022, 22 (16)
  • [48] Real-Time Detection of Fake-Shops through Machine Learning
    Beltzung, Louise
    Lindley, Andrew
    Dinica, Olivia
    Hermann, Nadin
    Lindner, Raphaela
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2254 - 2263
  • [49] Real-time detection of wildfire risk caused by powerline vegetation faults using advanced machine learning techniques
    Ma, Jun
    Cheng, Jack C. P.
    Jiang, Feifeng
    Gan, Vincent J. L.
    Wang, Mingzhu
    Zhai, Chong
    ADVANCED ENGINEERING INFORMATICS, 2020, 44
  • [50] An unsupervised machine learning approach for real-time damage detection in bridges
    Bayane, Imane
    Leander, John
    Karoumi, Raid
    ENGINEERING STRUCTURES, 2024, 308