Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

被引:0
作者
Su X. [1 ]
Wang X. [1 ]
Li H. [1 ]
Xu X. [1 ]
Wang Y. [1 ]
机构
[1] School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai
基金
中国国家自然科学基金;
关键词
decision planning; long short-term memory; multi-feature independent encoding; Self-driving cars; traffic graph; trajectory prediction;
D O I
10.2174/0122127976268634230929182355
中图分类号
学科分类号
摘要
Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a space-time interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning. © 2024 Bentham Science Publishers.
引用
收藏
页码:36 / 44
页数:8
相关论文
共 50 条
  • [31] Vessel trajectory prediction based on recurrent neural network
    Hu Y.
    Xia W.
    Hu X.
    Sun H.
    Wang Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (04): : 871 - 877
  • [32] Target Trajectory Prediction Based on Optimized Neural Network
    Song, Xiaoxiang
    Guo, Yan
    Li, Ning
    Sun, Baoming
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1956 - 1960
  • [33] UUV Trajectory Prediction Based on GRU Neural Network
    Liu, Yue
    Wang, Hongjian
    Zhang, Kai
    Ren, Jingfei
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8346 - 8352
  • [34] Spatial-Temporal Dual Graph Neural Network for Pedestrian Trajectory Prediction
    Zou, Yuming
    Piao, Xinglin
    Zhang, Yong
    Hu, Yongli
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1212 - 1217
  • [35] A deep neural network approach for pedestrian trajectory prediction considering flow heterogeneity
    Esfahani, Hossein Nasr
    Song, Ziqi
    Christensen, Keith
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023, 19 (01)
  • [36] Pedestrian Trajectory Prediction Based on Improved Social Spatio-Temporal Graph Convolution Neural Network
    Yang, Jikun
    Han, Chao
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 63 - 67
  • [37] Multimodal vehicle trajectory prediction based on intention inference with lane graph representation
    Chen, Yubin
    Zou, Yajie
    Xie, Yuanchang
    Zhang, Yunlong
    Tang, Jinjun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [38] Multi-information-based convolutional neural network with attention mechanism for pedestrian trajectory prediction
    Wang, Ruiping
    Cui, Yong
    Song, Xiao
    Chen, Kai
    Fang, Hong
    IMAGE AND VISION COMPUTING, 2021, 107
  • [39] Research on Vehicle Trajectory Prediction and Warning Based on Mixed Neural Networks
    Shen, Chih-Hsiung
    Hsu, Ting-Jui
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 27
  • [40] Vehicle trajectory prediction based on spatio-temporal Transformer feature fusion
    Zhao, Wenhong
    Wang, Wei
    Wan, Zilu
    Tongxin Xuebao/Journal on Communications, 2024, 45 (11): : 267 - 276