Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

被引:0
|
作者
Su X. [1 ]
Wang X. [1 ]
Li H. [1 ]
Xu X. [1 ]
Wang Y. [1 ]
机构
[1] School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai
基金
中国国家自然科学基金;
关键词
decision planning; long short-term memory; multi-feature independent encoding; Self-driving cars; traffic graph; trajectory prediction;
D O I
10.2174/0122127976268634230929182355
中图分类号
学科分类号
摘要
Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a space-time interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning. © 2024 Bentham Science Publishers.
引用
收藏
页码:36 / 44
页数:8
相关论文
共 50 条
  • [1] Prediction of Pedestrian Intention and Trajectory Based on Multi-feature Fusion
    Cao H.-T.
    Shi H.-J.
    Song X.-L.
    Li M.-J.
    Dai H.-L.
    Huang Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (10): : 308 - 318
  • [2] Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle
    Divya Singh
    Rajeev Srivastava
    Applied Intelligence, 2022, 52 : 12801 - 12816
  • [3] Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle
    Singh, Divya
    Srivastava, Rajeev
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12801 - 12816
  • [4] Trajectory Prediction with Heterogeneous Graph Neural Network
    Li, Guanlue
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 375 - 387
  • [5] A multi-feature stock price prediction model based on multi-feature calculation, LASSO feature selection, and Ca-LSTM network
    Chen, Xiao
    Cao, Lei
    Cao, Zhi
    Zhang, Hongwei
    CONNECTION SCIENCE, 2024, 36 (01)
  • [6] A Graph Neural Network-Based Multi-agent Joint Motion Prediction Method for Motion Trajectory Prediction
    Gao, Hongxu
    Huang, Zhao
    Zhou, Jia
    Cheng, Song
    Wang, Quan
    Li, Yu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 431 - 443
  • [7] Sparse Attention Graph Convolution Network for Vehicle Trajectory Prediction
    Chen, Chongpu
    Chen, Xinbo
    Yang, Yi
    Hang, Peng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 18294 - 18306
  • [8] Multidimensional Trajectory Prediction of UAV Swarms Based on Dynamic Graph Neural Network
    An, Yu
    Liu, Ao
    Liu, Hao
    Geng, Liang
    IEEE ACCESS, 2024, 12 : 57033 - 57042
  • [9] Attention-based Recurrent Neural Network for Urban Vehicle Trajectory Prediction
    Choi, Seongjin
    Kim, Jiwon
    Yeo, Hwasoo
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 327 - 334
  • [10] Long-Term Prediction of Vehicle Trajectory Based on a Deep Neural Network
    Jeong, Donggi
    Baek, Minjin
    Lee, Sang-Sun
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 725 - 727