Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries

被引:1
|
作者
Cheng, Xin [1 ]
Zhao, Jingteng [1 ]
Xiao, Huang [1 ]
Song, Congying [1 ]
Li, Fang [1 ]
Li, Guoxing [1 ]
机构
[1] Shandong Univ, Inst Frontier Chem, Sci Ctr Mat Creat & Energy Convers, Sch Chem & Chem Engn,Shandong Prov Key Lab Sci Mat, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLVATION SHEATH; GRAPHITE/ELECTROLYTE INTERFACE; DIFFUSION KINETICS; CATHODE MATERIALS; CURRENT COLLECTOR; OXYGEN VACANCY; LI+; PERFORMANCE; ELECTROLYTES; CAPACITY;
D O I
10.1021/acs.jpcc.4c05866
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fast charging of lithium-ion batteries (LIBs) is now a critical challenge for the development of electric vehicles (EVs). The difficulty of achieving fast-charging LIBs arises from the sluggish Li-ion transport in both electrolytes and electrode materials and the sluggish charge transfer processes across the electrode-electrolyte interphases (EEIs). To overcome these obstacles, it is important to fully understand the transport mechanism of Li+ in electrode materials, electrolytes, and EEIs. Spectroscopic techniques are useful tools to detect the structural changes and reveal the mass transport mechanism during the cycling of the batteries, which are helpful to guide the design of novel electrode materials and electrolytes as well as optimal interphases for fast-charging batteries. In this paper, recent advancements in the application of spectroscopic techniques for the development of fast-charging LIBs are reviewed. We focus on the key roles of spectroscopic techniques in revealing the reasons for improved fast-charging capabilities of LIBs, including their application in the fields of electrolyte engineering, interphase modification, Li-plating detection, and composition/structure optimization. Moreover, the application of electrospectroscopic techniques in exploring the interfacial reactions of the electrodes is also discussed. Finally, some perspectives and research directions for improving spectroscopic techniques to advance the development of fast-charging LIBs are provided.
引用
收藏
页码:18678 / 18694
页数:17
相关论文
共 50 条
  • [41] Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries
    Liu, Yangyang
    Shi, Haodong
    Wu, Zhong-Shuai
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) : 4834 - 4871
  • [42] Establish TiNb2O7@C as Fast-Charging Anode for Lithium-Ion Batteries
    Gong, Shuya
    Wang, Yue
    Li, Meng
    Wen, Yuehua
    Xu, Bin
    Wang, Hong
    Qiu, Jingyi
    Li, Bin
    MATERIALS, 2023, 16 (01)
  • [43] Extreme Fast-Charging of Lithium-Ion Cells: Effect on Anode and Electrolyte
    Yang, Zhenzhen
    Morrissette, James W.
    Meisner, Quinton
    Son, Seoung-Bum
    Trask, Stephen E.
    Tsai, Yifen
    Lopykinski, Susan
    Naik, Seema
    Bloom, Ira
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [44] Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density
    Sun, Yongming
    Wang, Li
    Li, Yanbin
    Li, Yuzhang
    Lee, Hye Ryoung
    Pei, Allen
    He, Xiangming
    Cui, Yi
    JOULE, 2019, 3 (04) : 1080 - 1093
  • [45] Urea-modified candle soot for enhanced anodic performance for fast-charging lithium-ion battery application
    Gangadharan, Ananya
    Mamidi, Suresh
    Sharma, Chandra S.
    Rao, Tata N.
    MATERIALS TODAY COMMUNICATIONS, 2020, 23
  • [46] Dual-functional and polydopamine-coated vanadium disulfide for "fast-charging" lithium-ion batteries
    Wang, Lu
    Dang, Hao
    He, Tianqi
    Liu, Rui
    Wang, Rui
    Ran, Fen
    BATTERY ENERGY, 2024, 3 (04):
  • [47] Towards fast-charging high-energy lithium-ion batteries: From nano- to micro-structuring perspectives
    Ju, Zhengyu
    Xu, Xiao
    Zhang, Xiao
    Raigama, Kasun U.
    Yu, Guihua
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [48] Self-lithiation electrode with improved lithium-ion transport kinetics enables fast-charging SiOx-based anode for lithium-ion batteries
    Luo, Hang
    Zhang, Xuemei
    Wang, Ziyang
    Xu, Changhaoyue
    Zhang, Yiming
    Zhu, Sihong
    Cai, Wenlong
    Zhang, Yun
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [49] Fast Charging of Lithium-ion Batteries via Electrode Engineering
    Vishnugopi, Bairav S.
    Verma, Ankit
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [50] Fracture of electrodes in lithium-ion batteries caused by fast charging
    Zhao, Kejie
    Pharr, Matt
    Vlassak, Joost J.
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)