Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries

被引:1
|
作者
Cheng, Xin [1 ]
Zhao, Jingteng [1 ]
Xiao, Huang [1 ]
Song, Congying [1 ]
Li, Fang [1 ]
Li, Guoxing [1 ]
机构
[1] Shandong Univ, Inst Frontier Chem, Sci Ctr Mat Creat & Energy Convers, Sch Chem & Chem Engn,Shandong Prov Key Lab Sci Mat, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLVATION SHEATH; GRAPHITE/ELECTROLYTE INTERFACE; DIFFUSION KINETICS; CATHODE MATERIALS; CURRENT COLLECTOR; OXYGEN VACANCY; LI+; PERFORMANCE; ELECTROLYTES; CAPACITY;
D O I
10.1021/acs.jpcc.4c05866
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fast charging of lithium-ion batteries (LIBs) is now a critical challenge for the development of electric vehicles (EVs). The difficulty of achieving fast-charging LIBs arises from the sluggish Li-ion transport in both electrolytes and electrode materials and the sluggish charge transfer processes across the electrode-electrolyte interphases (EEIs). To overcome these obstacles, it is important to fully understand the transport mechanism of Li+ in electrode materials, electrolytes, and EEIs. Spectroscopic techniques are useful tools to detect the structural changes and reveal the mass transport mechanism during the cycling of the batteries, which are helpful to guide the design of novel electrode materials and electrolytes as well as optimal interphases for fast-charging batteries. In this paper, recent advancements in the application of spectroscopic techniques for the development of fast-charging LIBs are reviewed. We focus on the key roles of spectroscopic techniques in revealing the reasons for improved fast-charging capabilities of LIBs, including their application in the fields of electrolyte engineering, interphase modification, Li-plating detection, and composition/structure optimization. Moreover, the application of electrospectroscopic techniques in exploring the interfacial reactions of the electrodes is also discussed. Finally, some perspectives and research directions for improving spectroscopic techniques to advance the development of fast-charging LIBs are provided.
引用
收藏
页码:18678 / 18694
页数:17
相关论文
共 50 条
  • [31] Sophisticated strategies for designing fast-charging lithium-ion batteries without sacrificing the energy density
    Choi, Hyeongjun
    Koo, Jin Kyo
    Hwang, Soo Min
    Kim, Young-Jun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [32] Critical Insights Into Fast Charging Techniques for Lithium-Ion Batteries in Electric Vehicles
    Duru, Kamala Kumari
    Karra, Chanakya
    Venkatachalam, Praneash
    Betha, Sai Akhil
    Anish Madhavan, Asha
    Kalluri, Sujith
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2021, 21 (01) : 137 - 152
  • [33] Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries
    Buyukcakir, Onur
    Ryu, Jaegeon
    Joo, Se Hun
    Kang, Jieun
    Yuksel, Recep
    Lee, Jiyun
    Jiang, Yi
    Choi, Sungho
    Lee, Sun Hwa
    Kwak, Sang Kyu
    Park, Soojin
    Ruoff, Rodney S.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
  • [34] Mitigation of Binder Migration Behavior during the Drying Process by Applying an Electric Field for Fast-Charging in Lithium-Ion Batteries
    Park, Keemin
    Ryu, Myeungwoo
    Jung, Yongmin
    Yoo, Hee Eun
    Myeong, Seungcheol
    Lee, Dongsoo
    Kim, Soo Chan
    Kim, Chanho
    Kim, Jeongheon
    Kwon, Jiseok
    Lee, Kangchun
    Cho, Chae-Woong
    Paik, Ungyu
    Song, Taeseup
    BATTERIES & SUPERCAPS, 2023, 6 (09)
  • [35] Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries
    Kim, Jisu
    Jeghan, Shrine Maria Nithya
    Lee, Gibaek
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305 (305)
  • [36] Improving Fast-Charging Performance of Lithium-Ion Batteries through Electrode-Electrolyte Interfacial Engineering
    Kim, Seungwon
    Park, Sewon
    Kim, Minjee
    Cho, Yoonhan
    Kang, Gumin
    Ko, Sunghyun
    Yoon, Daebong
    Hong, Seungbum
    Choi, Nam-Soon
    ADVANCED SCIENCE, 2024,
  • [37] Multicomponent Anodes Based on Amorphous ZnP2 for Fast-Charging/Discharging Lithium-Ion Batteries
    Liu, Lingwen
    Xie, Huixian
    Zheng, Yunshan
    Hui, Kwan San
    Sun, Yuanmiao
    Cheng, Hui-Ming
    Hui, Kwun Nam
    ADVANCED ENERGY MATERIALS, 2024,
  • [38] Fluorinated Solvent Molecule Tuning Enables Fast-Charging and Low-Temperature Lithium-Ion Batteries
    Mo, Yanbing
    Liu, Gaopan
    Yin, Yue
    Tao, Mingming
    Chen, Jiawei
    Peng, Yu
    Wang, Yonggang
    Yang, Yong
    Wang, Congxiao
    Dong, Xiaoli
    Xia, Yongyao
    ADVANCED ENERGY MATERIALS, 2023, 13 (32)
  • [39] Challenges and recent progress in fast-charging lithium-ion battery materials
    He, Jianhui
    Meng, Jingke
    Huang, Yunhui
    JOURNAL OF POWER SOURCES, 2023, 570
  • [40] Enlightenment of the Underestimated Parameters for a Fast-Charging Energy-Dense Anode for Lithium-Ion Batteries: An Outlook
    Kumar, Kundan
    Kundu, Rajen
    ENERGY & FUELS, 2025,