Structural regulation of 1T-MoS2/Graphene composite materials for high-performance lithium-ion capacitors

被引:1
作者
Zhu, Wenjun [1 ]
Zhang, Bofeng [1 ]
Chen, Tong [3 ]
Shi, Chengfei [1 ]
Dong, Xiansheng [3 ]
Tao, Xinyong [2 ]
机构
[1] Jingdezhen Ceram Univ, Sch Mech & Elect Engn, Jingdezhen 333403, Peoples R China
[2] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[3] Jiangxi Univ Sci & Technol, Energy Mat Comp Ctr, Sch Energy & Mech Engn, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
1T-MoS; 2; Graphene; Heterostructure; DFT; Lithium-ion capacitors; ENHANCED ELECTROCHEMICAL PERFORMANCE; ANODE MATERIALS; MOS2; GRAPHENE; HETEROSTRUCTURES; BATTERIES;
D O I
10.1016/j.est.2024.114178
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Heterogeneous composite structures are considered an effective strategy by utilizing the advantages of heterogeneous components. However, the relationship between structural modifications and electrochemical performance remains inadequately understood. In this study, we leveraged DFT calculations to elucidate the key advantages of the 1T-MoS2/Gr heterostructure, including its exceptional electrical conductivity, enhanced Li+ adsorption capabilities, and improved Li+ diffusion kinetics. To synthesize the 1T-MoS2/Gr composite, we developed a facile, one-step hydrothermal method using glucose as a reducing agent, achieving an optimal heterostructure that maximized the synergistic properties of the components. By comparing different levels of graphene content, the relationship between structural regulation and electrochemical performance has been studied, and a remarkably significant heterostructure composite material (1T-MoS2/Gr-0.8) was identified. As the anode material for lithium-ion batteries (LIBs), 1T-MoS2/Gr-0.8 presents excellent cycle performance with 467 mAh g- 1 under the condition (0.5 A g- 1, 600 cycles). Simultaneously, when assembling the lithium-ion capacitor (LIC) device with an activated carbon (AC) cathode, even at a high power density of 11.7 kW kg- 1, the energy density of the 1T-MoS2/Gr-0.8//AC LIC is as high as 137.0 Wh kg- 1. Moreover, the capacity retention rate remains at 89.9 % even after 2000 cycles at 2 A g- 1, demonstrating its candidacy as a high-performance anode material for LICs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hierarchical MoS2/C@MXene composite as an anode for high-performance lithium-ion capacitors
    Jin, Yifan
    Tan, Shutian
    Zhu, Zhengju
    He, Ying
    Bao, Le Quoc
    Saha, Petr
    Cheng, Qilin
    APPLIED SURFACE SCIENCE, 2022, 598
  • [2] Tetrabutylammonium-Intercalated 1T-MoS2 Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for High-Performance Lithium-Ion Capacitors
    Wang, Lei
    Zhang, Xiong
    Xu, Yanan
    Li, Chen
    Liu, Wenjie
    Yi, Sha
    Wang, Kai
    Sun, Xianzhong
    Wu, Zhong-Shuai
    Ma, Yanwei
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (36)
  • [3] Facile Synthesis of Graphene with Fast Ion/Electron Channels for High-Performance Symmetric Lithium-Ion Capacitors
    Xiao, Yongcheng
    Liu, Jing
    He, Dong
    Chen, Songbo
    Peng, Weimin
    Hu, Xinjun
    Liu, Tianfu
    Zhu, Zhenxing
    Bai, Yongxiao
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (32) : 38266 - 38277
  • [4] N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries
    Zhang, Yating
    Zhang, Zhanrui
    Zhu, Youyu
    Zhang, Yongling
    Yang, Mengnan
    Li, Siyi
    Suo, Ke
    Li, Keke
    NANOTECHNOLOGY, 2022, 33 (23)
  • [5] Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors
    Zhao, Chenyang
    Ang, Jia Ming
    Liu, Zhaolin
    Lu, Xuehong
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 462 - 469
  • [6] Engineering Ultrathin MoS2 Nanosheets Anchored on N-Doped Carbon Microspheres with Pseudocapacitive Properties for High-Performance Lithium-Ion Capacitors
    Jiang, Jiangmin
    Zhang, Yadi
    An, Yufeng
    Wu, Langyuan
    Zhu, Qi
    Dou, Hui
    Zhang, Xiaogang
    SMALL METHODS, 2019, 3 (07)
  • [7] Synthesis of Stacked Graphene-Sn Composite as a High-Performance Anode for Lithium-Ion Capacitors
    Ahn, Seongki
    Haniu, Yamato
    Nara, Hiroki
    Momma, Toshiyuki
    Sugimoto, Wataru
    Osaka, Tetsuya
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [8] Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review
    Sui, Dong
    Chang, Meijia
    Peng, Zexin
    Li, Changle
    He, Xiaotong
    Yang, Yanliang
    Liu, Yong
    Lu, Yanhong
    NANOMATERIALS, 2021, 11 (10)
  • [9] Functionalized Graphene for High Performance Lithium Ion Capacitors
    Lee, Ji Hoon
    Shin, Weon Ho
    Ryou, Myung-Hyun
    Jin, Jae Kyu
    Kim, Junhyung
    Choi, Jang Wook
    CHEMSUSCHEM, 2012, 5 (12) : 2328 - 2333
  • [10] Efficient method for synthesizing graphene materials applied in lithium-ion capacitors with high performance
    Zong, Jun
    Rong, Bokun
    Dong, Feifei
    Guo, Xiangli
    Yu, Naichuan
    Liu, Jingliang
    Zhou, Suhua
    Feng, Yanwen
    Yang, Yue
    Wang, Tianyang
    IONICS, 2022, 28 (06) : 2919 - 2929