Extremely Low Loss of Photonic Crystal Fiber for Terahertz Wave Propagation in Optical Communication Applications

被引:10
作者
Ahmed F. [1 ]
Roy S. [1 ]
Paul B.K. [1 ,2 ,3 ]
Ahmed K. [1 ,2 ]
Bahar A.N. [1 ]
机构
[1] Department of Information and Communication Technology (ICT), Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail
[2] Group of Bio-photomatiχ, Santosh, Tangail
[3] Department of Software Engineering, Daffodil International University, Sukrabad, Dhanmondi, Dhaka
关键词
effective material loss; nonlinear optics; photonic crystal fibers; scattering loss; terahertz wave guidance;
D O I
10.1515/joc-2018-0009
中图分类号
学科分类号
摘要
An enormously low loss symmetrical hybrid decagonal porous core spiral photonic crystal fiber (SH-PCF) has been proposed for terahertz (THz) wave guiding. The modal characteristics of the fiber and its mathematical analysis have been numerically completed using a full-vector finite element method (FEM). Simulation results show an ultra-low material loss of 0.0167 cm-1 and large effective area 1.95×106 μm2 which is 91.6% of bulk absorption material loss at controlling frequency f=1.0 THz with a core porosity 42%. Additionally, proposed structure establishes the comparatively higher core power fraction maintaining lower scattering loss about 1.8×10-15dB/cm at the same operating frequency. It promises the aforementioned advantages for efficient THz wave propagation. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.
引用
收藏
页码:393 / 401
页数:8
相关论文
共 35 条
[1]  
He Y., Ku P.I., Knab J.R., Chen J.Y., Markelz A.G., Protein dynamical transition does not require protein structure, Phys Rev Lett, 101, 17, (2008)
[2]  
Zhang J., Grischkowsky D., Waveguide terahertz time-domain spectroscopy of nanometer water layers, Opt Lett, 29, 14, pp. 1617-1619, (2004)
[3]  
Yuan W., Khan L., Webb D.J., Kalli K., Rasmussen H.K., Stefani A., Humidity insensitive TOPAS polymer fiber Bragg grating sensor, Opt Express, 19, 20, pp. 19731-19739, (2011)
[4]  
Chen Q., Jiang Z., Xu G.X., Zhang X.C., Near-field terahertz imaging with a dynamic aperture, Opt Lett, 25, 15, pp. 1122-1124, (2000)
[5]  
Fukunaga K., Sekine N., Hosako I., Oda N., Yoneyama H., Sudou T., Real-Time terahertz imaging for art conservation science, J Eur Opt Society-Rapid Publicat, 223, (2008)
[6]  
Ho L., Pepper M., Taday P., Terahertz spectroscopy: Signatures and fingerprints, Nat Photonics, 2, 9, pp. 541-543, (2008)
[7]  
Nagel M., Haring Bolivar P., Brucherseifer M., Kurz H., Bosserhoff A., Buttner R., Integrated THz technology for label-free genetic diagnostics, Appl Phys Lett, 80, 1, pp. 154-156, (2002)
[8]  
Strachan C.J., Taday P.F., Newnham D.A., Gordon K.C., Zeitler J.A., Pepper M., Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity, J Pharm Sci, 94, 4, pp. 837-846, (2005)
[9]  
Cook D.J., Decker B.K., Allen M.G., Quantitative THz spectroscopy of explosive materials, InOptical Terahertz Sci Technol, P. MA6, (2005)
[10]  
Hasan M.I., Razzak S.A., Hasanuzzaman G.K., Habib M.S., Ultra-low material loss and dispersion flattened fiber for THz transmission, Ieee Photonics Technol Lett, 26, 23, pp. 2372-2375, (2014)