Thermochromic properties of some colored oxide materials

被引:0
作者
Ferro G. [1 ]
Carole D. [1 ]
Cauwet F. [1 ]
Acher L. [1 ]
Ji H. [1 ]
Chiriac R. [1 ]
Toche F. [1 ]
Brioude A. [1 ]
机构
[1] Laboratoire Multimatériaux et Interfaces, UMR CNRS 5615
来源
Opt Mater X | 2022年
关键词
Aluminum compounds - Bismuth compounds - Cerium compounds - Chemical analysis - Chromium compounds - Color - Colorimetry - Erbium compounds - Hematite - Temperature - Tungsten compounds - Yttrium aluminum garnet;
D O I
10.1016/j.omx.2022.100167
中图分类号
学科分类号
摘要
The thermochromic properties up to 500 °C of some colored, commercial and non-toxic oxides were studied. It includes Bi2O3, Fe2O3, In2O3, WO3, Er2O3, YAG:Ce (Ce doped yttrium aluminum garnet Y3Al5O12) and YInMn-Blue (Mn doped yttrium indium oxide YInO3). From the CIELAB colorimetric parameters (L*a*b*), evolution of the color contrast ΔE with temperature was calculated. It allowed estimating that most of these oxides change color reversibly with increasing temperature, the strongest thermochromism being found for Bi2O3 (ΔE ∼ 65 at 500 °C). Two exceptions were identified: i) Er2O3 which stayed almost identically pink with ΔE<7 even at 500 °C and ii) WO3 which original color was not recovered upon cooling back to room temperature. While the color change of the other oxides was gradual with increasing temperature, YAG:Ce compound behaved differently since its thermochromicity abruptly started above 300 °C. DSC analyses did not allow detecting any physico-chemical event in relation with these peculiarities. The obtained datasets for all these compounds can be used for anticipating the thermochromic properties of these powders and the blends made out of them. © 2022
引用
收藏
相关论文
共 30 条
[1]  
Day J.H., Thermochromism of inorganic compounds, Chem. Rev., 68, 6, pp. 649-657, (1968)
[2]  
Cui Y., Ke Y., Liu C., Chen Z., Wang N., Zhang L., Zhou Y., Wang S., Gao Y., Long Y., Thermochromic VO2 for energy-efficient smart windows, Joule, 2, pp. 1707-1746, (2018)
[3]  
Ramlow H., Andrade K.L., Immich A.P.S., Smart textiles: an overview of recent progress on chromic textiles, J. Textil. Inst., 112, 1, pp. 152-171, (2021)
[4]  
Kulcar R., Friskovec M., Hauptman N., Vesel A., Gunde M.K., Colorimetric properties of reversible thermochromic printing inks, Dyes Pigments, 86, pp. 271-277, (2010)
[5]  
Cho Y., Yamaguchi A., Uehara R., Yasuhara S., Hoshina T., Miyauchi M., Temperature dependence on bandgap of semiconductor photocatalysts, J. Chem. Phys., 152, (2020)
[6]  
Serier-Brault H., Thibault L., Legrain M., Deniard P., Rocquefelte X., Leone P., Perillon J.-L., Le Bris S., Waku J., Jobic S., Thermochromism in yttrium iron garnet compounds, Inorg. Chem., 53, 23, pp. 12378-12383, (2014)
[7]  
Liu H., Qi H., Yuan L., Wang B., Hou C., Feng S., Design principles for 3d electron transfer in a Ga-based garnet to enable high performance reversible thermochromic material color maps, Chem. Mater., 31, 3, pp. 1048-1056, (2019)
[8]  
Liu H., Yuan L., Qi H., Du Y., Zhang Y., Hou C., Feng S., In-situ optical and structural insight of reversible thermochromic materials of Sm3-xBixFe5O12 (x = 0, 0.1, 0.3, 0.5), Dyes Pigments, 145, pp. 418-426, (2017)
[9]  
Thiry A.E., Gaudon M., Payen C., Daro N., Letard J.F., Gorsse S., Deniard P., Rocquefelte X., Demourgues A., Whangbo M.H., Jobic S., On the cyclability of the thermochromism in CuMoO4 and its tungsten derivatives CuMo1–xWxO4 (x < 0.12), Chem. Mater., 20, 6, pp. 2075-2077, (2008)
[10]  
Liu X., Staubitz A., Gesing T.M., Thermochromic behavior of yttrium-substituted bismuth oxides, ACS Appl. Mater. Interfaces, 11, pp. 33147-33156, (2019)