Ultrathin nanocapacitor assembled via atomic layer deposition

被引:0
|
作者
Medina, Javier Alonso Lopez [1 ]
Mejia-Salazar, J. Ricardo [2 ]
Carvalho, William O. F. [3 ]
Mercado, Cesar Lopez [4 ]
Nedev, N. [5 ]
Gomez, Faustino Reyes [2 ]
Oliveira Jr, Osvaldo N. [3 ]
Farias, M. H. [6 ]
Tiznado, Hugo [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, CONAHCYT, IxM, Ensenada 22800, Mexico
[2] Natl Inst Telecommun Inatel, BR-37536001 Santa Rita Do Sapucai, Brazil
[3] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, Brazil
[4] Univ Autonoma Baja Calif, FIAD, Ensenada 22860, Mexico
[5] Univ Autonoma Baja Calif, Inst Ingn, Mexicali 21280, Mexico
[6] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada 22800, Mexico
基金
巴西圣保罗研究基金会;
关键词
nanocapacitor; dielectric materials; atomic layer deposition; ultrathin films; THIN-FILMS; ELECTRICAL-PROPERTIES; CAPACITORS; WATER;
D O I
10.1088/1361-6528/ad7f5c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We fabricated ultrathin metal-oxide-semiconductor (MOS) nanocapacitors using atomic layer deposition. The capacitors consist of a bilayer of Al2O3 and Y2O3 with a total thickness of similar to 10 nm, deposited on silicon substrate. The presence of the two materials, each slab being similar to 5 nm thick and uniform over a large area, was confirmed with transmission electron microscopy and x-ray photoelectron spectroscopy. The capacitance in accumulation varied from 1.6 nF (at 1 MHz) to similar to 2.8 nF (at 10 kHz), which is one to two orders of magnitude higher than other nanocapacitors. This high capacitance is attributed to the synergy between the dielectric properties of ultrathin Al2O3 and Y2O3 layers. The electrical properties of the nanocapacitor are stable within a wide range of temperatures, from 25 degrees C to 150 degrees C, as indicated by capacitance-voltage (C-V). Since the thickness-to-area ratio is negligible, the nanocapacitor could be simulated as a single parallel plate capacitor in COMSOL Multiphysics, with good agreement between experimental and simulation data. As a proof-of-concept we simulated a MOS field effect transistor device with the nanocapacitor gate dielectric, whose drain current is sufficiently high for micro and nanoelectronics integrated circuits, including for applications in sensing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions
    Wang, Meihua
    Gao, Zhe
    Zhang, Bin
    Yang, Huimin
    Qiao, Yan
    Chen, Shuai
    Ge, Huibin
    Zhang, Jiankang
    Qin, Yong
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (25) : 8438 - 8443
  • [32] Radical enhanced atomic layer deposition of titanium dioxide
    Niskanen, Antti
    Arstila, Kai
    Leskela, Markku
    Ritala, Mikko
    CHEMICAL VAPOR DEPOSITION, 2007, 13 (04) : 152 - 157
  • [33] Ultrathin Hematite on Mesoporous WO3 from Atomic Layer Deposition for Minimal Charge Recombination
    Kim, Eunsoo
    Kim, Sungsoon
    Choi, Young Moon
    Park, Jong Hyeok
    Shin, Hyunjung
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (30): : 11358 - 11367
  • [34] Characteristics of low-κ SiOC films deposited via atomic layer deposition
    Lee, Jaemin
    Jang, Woochool
    Kim, Hyunjung
    Shin, Seokyoon
    Kweon, Youngkyun
    Lee, Kunyoung
    Jeon, Hyeongtag
    THIN SOLID FILMS, 2018, 645 : 334 - 339
  • [35] Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition
    Lin, Edward L.
    Edmondson, Bryce I.
    Hu, Shen
    Ekerdt, John G.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (113):
  • [36] Reinforcing nanocolloidal crystals by tuning interparticle bonding via atomic layer deposition
    Zhang, Di
    Zhang, Lei
    Lee, Daeyeon
    Cheng, Xuemei
    Feng, Gang
    ACTA MATERIALIA, 2015, 95 : 216 - 223
  • [37] ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition: Material Properties Within and Outside the "Atomic Layer Deposition Window"
    Pilz, Julian
    Perrotta, Alberto
    Leising, Guenther
    Coclite, Anna Maria
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (08):
  • [38] Temperature optimization of NiO hole transport layer prepared by atomic layer deposition
    Farva, Umme
    Kim, Jeha
    VACUUM, 2023, 207
  • [39] Design of advanced energy-related materials via atomic layer deposition
    Jin, Rui
    Wang, Hengwei
    Lu, Junling
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (27): : 3670 - 3690
  • [40] Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition
    Liu, Lei
    Huang, Yazhou
    Sha, Jingjie
    Chen, Yunfei
    NANOTECHNOLOGY, 2017, 28 (19)