Ultrathin nanocapacitor assembled via atomic layer deposition

被引:0
|
作者
Medina, Javier Alonso Lopez [1 ]
Mejia-Salazar, J. Ricardo [2 ]
Carvalho, William O. F. [3 ]
Mercado, Cesar Lopez [4 ]
Nedev, N. [5 ]
Gomez, Faustino Reyes [2 ]
Oliveira Jr, Osvaldo N. [3 ]
Farias, M. H. [6 ]
Tiznado, Hugo [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, CONAHCYT, IxM, Ensenada 22800, Mexico
[2] Natl Inst Telecommun Inatel, BR-37536001 Santa Rita Do Sapucai, Brazil
[3] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, Brazil
[4] Univ Autonoma Baja Calif, FIAD, Ensenada 22860, Mexico
[5] Univ Autonoma Baja Calif, Inst Ingn, Mexicali 21280, Mexico
[6] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada 22800, Mexico
基金
巴西圣保罗研究基金会;
关键词
nanocapacitor; dielectric materials; atomic layer deposition; ultrathin films; THIN-FILMS; ELECTRICAL-PROPERTIES; CAPACITORS; WATER;
D O I
10.1088/1361-6528/ad7f5c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We fabricated ultrathin metal-oxide-semiconductor (MOS) nanocapacitors using atomic layer deposition. The capacitors consist of a bilayer of Al2O3 and Y2O3 with a total thickness of similar to 10 nm, deposited on silicon substrate. The presence of the two materials, each slab being similar to 5 nm thick and uniform over a large area, was confirmed with transmission electron microscopy and x-ray photoelectron spectroscopy. The capacitance in accumulation varied from 1.6 nF (at 1 MHz) to similar to 2.8 nF (at 10 kHz), which is one to two orders of magnitude higher than other nanocapacitors. This high capacitance is attributed to the synergy between the dielectric properties of ultrathin Al2O3 and Y2O3 layers. The electrical properties of the nanocapacitor are stable within a wide range of temperatures, from 25 degrees C to 150 degrees C, as indicated by capacitance-voltage (C-V). Since the thickness-to-area ratio is negligible, the nanocapacitor could be simulated as a single parallel plate capacitor in COMSOL Multiphysics, with good agreement between experimental and simulation data. As a proof-of-concept we simulated a MOS field effect transistor device with the nanocapacitor gate dielectric, whose drain current is sufficiently high for micro and nanoelectronics integrated circuits, including for applications in sensing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Atomic Layer Deposition of Ultrathin Crystalline Epitaxial Films of V2O5
    Sreedhara, M. B.
    Ghatak, J.
    Bharath, B.
    Rao, C. N. R.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 3178 - 3185
  • [22] Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers
    Polydorou, Ermioni
    Botzakaki, Martha A.
    Sakellis, Ilias
    Soultati, Anastasia
    Kaltzoglou, Andreas
    Papadopoulos, Theodoros A.
    Briscoe, Joe
    Drivas, Charalabos
    Seintis, Kostas
    Fakis, Mihalis
    Palilis, Leonidas C.
    Georga, Stavroula N.
    Krontiras, Christoforos A.
    Kennou, Stella
    Falaras, Polycarpos
    Boukos, Nikos
    Davazoglou, Dimitris
    Argitis, Panagiotis
    Vasilopoulou, Maria
    ADVANCED MATERIALS INTERFACES, 2017, 4 (18):
  • [23] Catalytically ultrathin titania coating to enhance energy storage and release of aluminum hydride via atomic layer deposition
    Hu, Zhijia
    Xu, Xingxing
    Shao, Huachen
    Luo, Ruidong
    Wang, Mingxuan
    Tang, Gen
    Liu, Xiao
    Shan, Bin
    Chen, Rong
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [24] Atomic layer deposition of iron oxide on a porous carbon substrate via ethylferrocene and an oxygen plasma
    Labbe, Matthew
    Clark, Michael P.
    Abedi, Zahra
    He, Anqiang
    Cadien, Ken
    Ivey, Douglas G.
    SURFACE & COATINGS TECHNOLOGY, 2021, 421
  • [25] Performance variation with pristine and doped high-k materials via atomic layer deposition
    Jung, Eun Su
    Yoo, Jinuk
    Choi, Tae Min
    Lee, Hwa Rim
    Lee, Chae Yeon
    Kim, Dong Hyun
    Pyo, Sung Gyu
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025, 22 (02)
  • [26] Janus Membranes via Diffusion-Controlled Atomic Layer Deposition
    Waldman, Ruben Z.
    Yang, Hao-Cheng
    Mandia, David J.
    Nealey, Paul F.
    Elam, Jeffrey W.
    Darling, Seth B.
    ADVANCED MATERIALS INTERFACES, 2018, 5 (15):
  • [27] Ultrathin TiO2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates
    Capek, Jan
    Sepulveda, Marcela
    Bacova, Jana
    Rodriguez-Pereira, Jhonatan
    Zazpe, Raul
    Cicmancova, Veronika
    Nyvltova, Pavlina
    Handl, Jiri
    Knotek, Petr
    Baishya, Kaushik
    Sopha, Hanna
    Smid, Lenka
    Rousar, Tomas
    Macak, Jan M.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (05) : 5627 - 5636
  • [28] Surface functionalization on nanoparticles via atomic layer deposition
    Cao, Kun
    Cai, Jiaming
    Shan, Bin
    Chen, Rong
    SCIENCE BULLETIN, 2020, 65 (08) : 678 - 688
  • [29] Atomic layer deposition ultrathin film origami using focused ion beams
    Supekar, O. D.
    Brown, J. J.
    Eigenfeld, N. T.
    Gertsch, J. C.
    Bright, V. M.
    NANOTECHNOLOGY, 2016, 27 (49)
  • [30] Spectroscopic analysis of ultrathin amorphous ZnO films grown by atomic layer deposition
    Lidiya, T., V
    Kumar, Rajeev K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 2121 - 2124