Porous hexagonal Mn5O8 nanosheets as fast-charging anode materials for lithium-ion batteries

被引:0
|
作者
Zhou, Xinchi [1 ]
Zhang, Zhen [1 ]
Jiang, Xinyu [1 ]
Tan, Suchong [1 ]
Pan, Zhengdao [1 ]
Rao, Xingyou [1 ]
Wu, Yutong [1 ]
Wang, Zhoulu [1 ]
Liu, Xiang [1 ]
Gu, Jian [1 ,2 ]
Zhang, Yi [1 ]
Jiang, Shan [3 ,4 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
[3] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
[4] Jianghuai Adv Technol Ctr, Hefei 230000, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2024年 / 13卷 / 10期
基金
中国国家自然科学基金;
关键词
Mn; 5; O; 8; lithium-ion batteries (LIBs); anode; fast-charging; ELECTROCHEMICAL PROPERTIES; OXYGEN VACANCIES; GRAPHITE ANODE; HIGH-CAPACITY; OXIDE; CARBON; NANOPARTICLES; EFFICIENT; CONSTRUCTION; FRAMEWORKS;
D O I
10.26599/JAC.2024.9220963
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Among various metal oxide nanomaterials, manganese oxides, which can exist in different structures and valence states, are considered highly promising anode materials for lithium-ion batteries (LIBs). However, conventional manganese oxides, such as MnO and MnO2, face significant challenges during cycling process. Specifically, poor electronic conductivity and large volume changes result in low specific capacity during high current charging and discharging, as well as poor fast-charging performance. This work presents an approach to synthesizing porous hexagonal Mn5O8 nanosheets via hydrothermal and annealing methods and applies them as anode materials for LIBs. The Mn5O8 nanomaterials exhibit a thin plate morphology, which effectively reduces the distance for ion/electron transmission and mitigates the phenomenon of volume expansion. Additionally, the large pore size of Mn5O8 results in abundant interlayer and intralayer defects, which further increase the rate of ion transmission. These unique characteristics enable Mn5O8 to demonstrate excellent electrochemical performance (938.7 mAh<middle dot>g-1 after 100 cycles at 100 mA<middle dot>g-1) and fast charging performance (675.7 mAh<middle dot>g-1 after 1000 cycles at 3000 mA<middle dot>g-1), suggesting that Mn5O8 nanosheets have the potential to be an ideal fast-charging anode material for LIBs.
引用
收藏
页码:1635 / 1642
页数:8
相关论文
共 50 条
  • [21] Enabling fast-charging of lithium-ion batteries through printed electrodes
    Wang, Guanyi
    Xiong, Jie
    Zhou, Bingyao
    Palaniappan, Valliammai
    Emani, Himanaga
    Mathew, Kevin
    Kornyo, Emmanuel
    Tay, Zachary
    Hanson, Tony Joseph
    Maddipatla, Dinesh
    Zhang, Guoxin
    Atashbar, Massood
    Lu, Wenquan
    Wu, Qingliu
    ELECTROCHIMICA ACTA, 2025, 514
  • [22] Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries
    Jinghui Ren
    Zhenyu Wang
    Peng Xu
    Cong Wang
    Fei Gao
    Decheng Zhao
    Shupei Liu
    Han Yang
    Di Wang
    Chunming Niu
    Yusong Zhu
    Yutong Wu
    Xiang Liu
    Zhoulu Wang
    Yi Zhang
    Nano-Micro Letters, 2022, 14
  • [23] Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries
    Kim, Jisu
    Jeghan, Shrine Maria Nithya
    Lee, Gibaek
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305 (305)
  • [24] Enabling fast-charging via layered ternary transition metal oxide as anode materials for lithium-ion batteries
    De Luna, Yannis
    Youssef, Khaled
    Bensalah, Nasr
    MATERIALS RESEARCH BULLETIN, 2025, 185
  • [25] Progress of LiEuTiO4 for Anode Materials in Lithium-Ion Batteries with Fast Charging
    Zhao Hong
    Wang Li
    He Xiangming
    RARE METAL MATERIALS AND ENGINEERING, 2020, 49 (11) : 3998 - 4004
  • [26] Fast-Charging Anode Materials for Sodium-Ion Batteries
    Wan, Yanhua
    Huang, Biyan
    Liu, Wenshuai
    Chao, Dongliang
    Wang, Yonggang
    Li, Wei
    ADVANCED MATERIALS, 2024, 36 (35)
  • [27] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [28] Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives
    Zhao, Jingteng
    Song, Congying
    Li, Guoxing
    CHEMPLUSCHEM, 2022, 87 (07):
  • [29] Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast-Charging Lithium-Ion Batteries
    Wu, Bei
    Niu, Shuwen
    Wang, Chao
    Wu, Geng
    Zhang, Yida
    Han, Xiao
    Liu, Peigen
    Lin, Yue
    Yan, Wensheng
    Wang, Gongming
    Hong, Xun
    SMALL, 2023, 19 (43)
  • [30] Challenges and opportunities toward fast-charging of lithium-ion batteries
    Xie, Wenlong
    Liu, Xinhua
    He, Rong
    Li, Yalun
    Gao, Xinlei
    Li, Xinghu
    Peng, Zhaoxia
    Feng, Suwei
    Feng, Xuning
    Yang, Shichun
    JOURNAL OF ENERGY STORAGE, 2020, 32