Exploring generative adversarial networks and adversarial training

被引:0
作者
Sajeeda A. [1 ]
Hossain B.M.M. [1 ]
机构
[1] Institute of Information Technology, University of Dhaka, Dhaka
来源
Int. J. Cogn. Comp. Eng. | / 78-89期
关键词
Adversarial training; Deep learning; GANs; Generative adversarial networks; Generative modeling;
D O I
10.1016/j.ijcce.2022.03.002
中图分类号
学科分类号
摘要
Recognized as a realistic image generator, Generative Adversarial Network (GAN) occupies a progressive section in deep learning. Using generative modeling, the underlying generator model learns the real target distribution and outputs fake samples from the generated replica distribution. The discriminator attempts to distinguish the fake and the real samples and sends feedback to the generator so that the generator can improve the fake samples. Recently, GANs have been competing with the state-of-the-art in various tasks including image processing, missing data imputation, text-to-image translation and adversarial example generation. However, the architecture suffers from training instability, resulting in problems like non-convergence, mode collapse and vanishing gradients. The research community has been studying and devising modified architectures, alternative loss functions and techniques to address these concerns. A section of publications has studied Adversarial Training, alongside GANs. This review covers the existing works on the instability of GANs from square one and a portion of recent publications to illustrate the trend of research. It also gives insight on studies exploring adversarial attacks and research discussing Adversarial Attacks with GANs. To put it more eloquently, this study intends to guide researchers interested in studying improvisations made to GANs for stable training, in the presence of Adversarial Attacks. © 2022
引用
收藏
页码:78 / 89
页数:11
相关论文
共 50 条
  • [31] Surgical Tool Segmentation Using Generative Adversarial Networks With Unpaired Training Data
    Zhang, Zhongkai
    Rosa, Benoit
    Nageotte, Florent
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6266 - 6273
  • [32] ARGAN: Adversarially Robust Generative Adversarial Networks for Deep Neural Networks Against Adversarial Examples
    Choi, Seok-Hwan
    Shin, Jin-Myeong
    Liu, Peng
    Choi, Yoon-Ho
    IEEE ACCESS, 2022, 10 : 33602 - 33615
  • [33] Investigating object compositionality in Generative Adversarial Networks
    Steenkiste, Sjoerd van
    Kurach, Karol
    Schmidhuber, Juergen
    Gelly, Sylvain
    NEURAL NETWORKS, 2020, 130 (130) : 309 - 325
  • [34] Convolutional and generative adversarial neural networks in manufacturing
    Kusiak, Andrew
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2020, 58 (05) : 1594 - 1604
  • [35] Photoacoustic image synthesis with generative adversarial networks
    Schellenberg, Melanie
    Groehl, Janek
    Dreher, Kris K.
    Noelke, Jan-Hinrich
    Holzwarth, Niklas
    Tizabi, Minu D.
    Seitel, Alexander
    Maier-Hein, Lena
    PHOTOACOUSTICS, 2022, 28
  • [36] Augmenting data with generative adversarial networks: An overview
    Ljubic, Hrvoje
    Martinovic, Goran
    Volaric, Tomislav
    INTELLIGENT DATA ANALYSIS, 2022, 26 (02) : 361 - 378
  • [37] A Generative Adversarial Networks for Log Anomaly Detection
    Duan, Xiaoyu
    Ying, Shi
    Yuan, Wanli
    Cheng, Hailong
    Yin, Xiang
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (01): : 135 - 148
  • [38] Impact of Hyperparameters on the Generative Adversarial Networks Behavior
    Sabiri, Bihi
    El Asri, Bouchra
    Rhanoui, Maryem
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2022, : 428 - 438
  • [39] Research Issues on Generative Adversarial Networks and Applications
    Mukhiddin, Toshpulatov
    Lee, WooKey
    Lee, Suan
    Rashid, Tojiboev
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 487 - 488
  • [40] Lung image segmentation by generative adversarial networks
    Cai, Jiaxin
    Zhu, Hongfeng
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321