Ultra-Stretchable Microfluidic Devices for Optimizing Particle Manipulation in Viscoelastic Fluids

被引:2
作者
Kang, Xiaoyue [1 ]
Ma, Jingtao [2 ]
Cha, Haotian [3 ]
Hansen, Helena H. W. B. [3 ]
Chen, Xiangxun [3 ]
Ta, Hang T. [3 ,4 ]
Tian, Fangbao [2 ]
Nguyen, Nam-Trung [3 ]
Klimenko, Alexander [1 ]
Zhang, Jun [3 ,5 ]
Yuan, Dan [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4067, Australia
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Nathan, Qld 4111, Australia
[4] Griffith Univ, Sch Environm & Sci, Biosci Discipline, Nathan, Qld 4111, Australia
[5] Griffith Univ, Sch Engn & Built Environm, Nathan, Qld 4111, Australia
基金
澳大利亚研究理事会;
关键词
viscoelastic fluids; particle separation; viscoelasticmicrofluidics; stretchable microfluidic device; cell separation; cancer cell separation; CIRCULATING TUMOR-CELLS; SOLID PARTICLES; FLOW; TECHNOLOGIES; SIMULATION; MIGRATION;
D O I
10.1021/acsami.4c15893
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Viscoelastic microfluidics leverages the unique properties of non-Newtonian fluids to manipulate and separate micro- or submicron particles. Channel geometry and dimension are crucial for device performance. Traditional rigid microfluidic devices require numerous iterations of fabrication and testing to optimize these parameters, which is time-consuming and costly. In this work, we developed a flexible microfluidic device using ultra-stretchable and biocompatible Flexdym material to overcome this issue. Our device allows for simultaneous modification of channel dimensions by external stretching. We fabricated a stretchable device with an initial square microchannel (30 mu m x 30 mu m), and the channel aspect ratio can be adjusted from 1 to 5 by external stretching. Next, the effects of aspect ratio, particle size, flow rate, and poly(ethylene oxide) (PEO) concentration that make the fluid viscoelastic on particle migration were investigated. Finally, we demonstrated the feasibility of our approach by testing channels with an aspect ratio of 3 for the separation of both particles and cells.
引用
收藏
页码:61765 / 61773
页数:9
相关论文
共 62 条
[1]   Large strain deformation and cracking of nano-scale gold films on PDMS substrate [J].
Akogwu, Onobu ;
Kwabi, David ;
Midturi, Swaminadham ;
Eleruja, Marcus ;
Babatope, Babaniyi ;
Soboyejo, W. O. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 170 (1-3) :32-40
[2]   Circulating tumour cells in clinical practice: Methods of detection and possible characterization [J].
Alunni-Fabbroni, Marianna ;
Sandri, Maria Teresa .
METHODS, 2010, 50 (04) :289-297
[3]   An acoustofluidic device for efficient mixing over a wide range of flow rates [J].
Bachman, Hunter ;
Chen, Chuyi ;
Rufo, Joseph ;
Zhao, Shuaiguo ;
Yang, Shujie ;
Tian, Zhenhua ;
Nama, Nitesh ;
Huang, Po-Hsun ;
Huang, Tony Jun .
LAB ON A CHIP, 2020, 20 (07) :1238-1248
[4]   An updated review on particle separation in passive microfluidic devices [J].
Bayareh, Morteza .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 153
[5]   Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids [J].
Bentor, Joseph ;
Malekanfard, Amirreza ;
Raihan, Mahmud Kamal ;
Wu, Sen ;
Pan, Xinxiang ;
Song, Yongxin ;
Xuan, Xiangchun .
ELECTROPHORESIS, 2021, 42 (21-22) :2154-2161
[6]   Dielectrophoresis in microfluidics technology [J].
Cetin, Barbaros ;
Li, Dongqing .
ELECTROPHORESIS, 2011, 32 (18) :2410-2427
[7]   Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel [J].
Cha, Haotian ;
Dai, Yuchen ;
Hansen, Helena H. W. B. ;
Ouyang, Lingxi ;
Chen, Xiangxun ;
Kang, Xiaoyue ;
An, Hongjie ;
Ta, Hang Thu ;
Nguyen, Nam-Trung ;
Zhang, Jun .
CYBORG AND BIONIC SYSTEMS, 2023, 4
[8]   Multiphysics microfluidics for cell manipulation and separation: a review [J].
Cha, Haotian ;
Fallahi, Hedieh ;
Dai, Yuchen ;
Yuan, Dan ;
An, Hongjie ;
Nguyen, Nam-Trung ;
Zhang, Jun .
LAB ON A CHIP, 2022, 22 (03) :423-444
[9]   Deterministic lateral displacement (DLD) in the high Reynolds number regime: high-throughput and dynamic separation characteristics [J].
Dincau, Brian M. ;
Aghilinejad, Arian ;
Hammersley, Taylor ;
Chen, Xiaolin ;
Kim, Jong-Hoon .
MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (06)
[10]   Size-tuneable isolation of cancer cells using stretchable inertial microfluidics [J].
Fallahi, Hedieh ;
Yadav, Sharda ;
Phan, Hoang-Phuong ;
Ta, Hang ;
Zhang, Jun ;
Nguyen, Nam-Trung .
LAB ON A CHIP, 2021, 21 (10) :2008-2018