Quantitative method to measure thermal conductivity of one-dimensional nanostructures based on scanning thermal wave microscopy

被引:0
|
作者
机构
[1] Dept. of Mechanical Engineering, Korea Univ.
来源
Kwon, Oh Myoung (omkwon@korea.ac.kr) | 1600年 / Korean Society of Mechanical Engineers卷 / 38期
关键词
Nanostructure; Scanning Thermal Wave Microscopy; Thermal Conductivity; Thermal Contact Resistance;
D O I
10.3795/KSME-B.2014.38.12.957
中图分类号
学科分类号
摘要
We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques. © 2014 The Korean Society of Mechanical Engineers.
引用
收藏
页码:957 / 962
页数:5
相关论文
共 50 条
  • [21] Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures
    Kandemir, Ali
    Ozden, Ayberk
    Cagin, Tahir
    Sevik, Cem
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2017, 18 (01) : 187 - 196
  • [22] Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
    张跃飞
    王丽
    R.Heiderhoff
    A.K.Geinzer
    卫斌
    吉元
    韩晓东
    L.J.Balk
    张泽
    Chinese Physics B, 2012, (01) : 374 - 379
  • [23] Thermal Wave-Based Scanning Probe Microscopy and Its Applications
    Pelzl, J.
    Chirtoc, M.
    Meckenstock, R.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (8-9) : 1353 - 1366
  • [24] Thermal Wave-Based Scanning Probe Microscopy and Its Applications
    J. Pelzl
    M. Chirtoc
    R. Meckenstock
    International Journal of Thermophysics, 2013, 34 : 1353 - 1366
  • [25] Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques
    Zhang Yue-Fei
    Li, Wang
    Heiderhoff, R.
    Geinzer, A. K.
    Bin, Wei
    Yuan, Ji
    Han Xiao-Dong
    Balk, L. J.
    Ze, Zhang
    CHINESE PHYSICS B, 2012, 21 (01)
  • [26] A novel method to measure thermal conductivity of nanofluids
    Xu, Guoqiang
    Fu, Jian
    Dong, Bensi
    Quan, Yongkai
    Song, Gu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 130 : 978 - 988
  • [27] Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis
    Juszczyk, J.
    Kazmierczak-Balata, A.
    Firek, P.
    Bodzenta, J.
    ULTRAMICROSCOPY, 2017, 175 : 81 - 86
  • [28] Imaging of thermal conductivity with sub-micrometer resolution using scanning thermal microscopy
    Gu, YQ
    Ruan, XL
    Han, L
    Zhu, DZ
    Sun, XY
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (04) : 1115 - 1124
  • [29] Imaging of Thermal Conductivity with Sub-Micrometer Resolution Using Scanning Thermal Microscopy
    Y. Q. Gu
    X. L. Ruan
    L. Han
    D. Z. Zhu
    X. Y. Sun
    International Journal of Thermophysics, 2002, 23 : 1115 - 1124
  • [30] Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy
    Buckley, David
    Kudrynskyi, Zakhar R.
    Balakrishnan, Nilanthy
    Vincent, Tom
    Mazumder, Debarati
    Castanon, Eli
    Kovalyuk, Zakhar D.
    Kolosov, Oleg
    Kazakova, Olga
    Tzalenchuk, Alexander
    Patane, Amalia
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (11)