Fabrication of high Tc BaTiO3-(Bi0.5Na0.5)TiO3 lead-free positive temperature coefficient of resistivity ceramics

被引:0
|
作者
Leng, Sen-Lin [1 ]
Jia, Fei-Hu [1 ]
Zhong, Zhi-Kun [1 ]
Yang, Qin-Fang [1 ]
Li, Guo-Rong [2 ]
Zheng, Liao-Ying [2 ]
机构
[1] Institute of Physics and Electronics Engineering, Tongren University, Tongren
[2] Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai
来源
Wuji Cailiao Xuebao/Journal of Inorganic Materials | 2015年 / 30卷 / 06期
关键词
BaTiO[!sub]3[!/sub]-(Bi[!sub]0.5[!/sub]Na[!sub]0.5[!/sub])TiO[!sub]3[!/sub; Fabrication; Lead-free; Positive temperature coefficient of resistivity;
D O I
10.15541/jim20140568
中图分类号
学科分类号
摘要
High curie temperature (Tc) (1-xmol%)BaTiO3-xmol%(Bi0.5Na0.5)TiO3(BBNTx) lead-free positive temperature coefficient of resistivity(PTCR) ceramics were prepared by the conventional solid state reaction sintering method. XRD patterns showed that all BBNTx samples had a single tetragonal phase perovskite structure. The SEM results showed that as the content of BNT increased from 1mol% to 60mol%, the average grain size monotonously decreased. The 0.2mol% Nb-doped BBNT1 ceramic sintered in air had low room-temperature resistivity (ρ25) of ~102 Ω·cm and high resistivity jump (maximum resistivity [ρmax]/minimum resistivity [ρmin]) of ~4.5 orders of magnitude with Tc at about 150℃. The 0.3mol% Nb-doped BBNTx(10≤x≤60) ceramics, sintered in N2, also showed distinct PTCR effect with Tc between 180℃ and 235℃. As the BNT content increased, the ρ25 of the BBNTx rapidly increased with the resistivity jump decrease. ©, 2015, Science Press. All right reserved.
引用
收藏
页码:576 / 580
页数:4
相关论文
共 18 条
  • [1] Heywang W., Barium titanate as a semiconductor with blocking layers, Solid-State Electron, 3, 1, pp. 51-58, (1961)
  • [2] Jonker G.H., Some aspects of semiconducting barium titanate, Solid-State Electron, 7, pp. 895-903, (1964)
  • [3] Pan Y., Chen X., Ren P., Et al., State of the arts of high T<sub>c</sub> PTC ceramics, Piezoelectrics and Acoustooptics, 20, 5, pp. 326-331, (1998)
  • [4] Zhou X.-N., Jiang F., Zhao F., Et al., A study of the PTCR material based on(Ba<sub>0.3</sub>Pb<sub>0.7</sub>)TiO<sub>3</sub>, Journal of Inorganic Materials, 8, 2, pp. 196-200, (1993)
  • [5] Takeda H., Aoto W., Shiosaki T., BaTiO<sub>3</sub>-(Bi<sub>1/2</sub>Na<sub>1/2</sub>)TiO<sub>3</sub> solid-solution semiconducting ceramics with T<sub>c</sub> >130℃, Appl. Phys. Lett., 87, (2005)
  • [6] Shimada T., Touji K., Katsuyama Y., Et al., Lead free PTCR ceramics and its electrical properties, J. Eur. Ceram. Soc., 27, pp. 3877-3882, (2007)
  • [7] Takeda H., Shimada T., Katsuyama Y., Et al., Fabrication and operation limit of lead-free PTCR ceramics using BaTiO<sub>3</sub>- (Bi<sub>1/2</sub> Na<sub>1/2</sub>)TiO<sub>3</sub> system, J. Electroceram, 22, pp. 263-269, (2009)
  • [8] Pu Y.P., Wu H.D., Wei J.F., Influence of doping Nb<sup>5+</sup> and Mn<sup>2+</sup> on the PTCR effects of Ba<sub>0.92</sub>Ca<sub>0.05</sub>(Bi<sub>0.5</sub>Na<sub>0.5</sub>)<sub>0.03</sub>TiO<sub>3</sub> ceramics, J. Mater. Sci: Mater. Electron., 22, pp. 1479-1482, (2011)
  • [9] Li H.L., Kang J.N., Guo F., Et al., Effect of the Nb<sub>2</sub>O<sub>5</sub> content on electrical properties of lead-free BaTiO<sub>3</sub>-Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> ceramics, Ceram. Int., 39, pp. 7589-7593, (2013)
  • [10] Li Y.-Y., Li G.-R., Wang T.-B., Et al., Effects of niobium-doping on the structure and electrical properties of (Ba, Bi, Na)TiO<sub>3</sub>-based PTCR ceramics, Journal of Inorganic Materials, 24, 2, pp. 374-378, (2009)