On turning maneuverability in self-propelled burst-and-coast swimming

被引:2
|
作者
Chao, Li-Ming [1 ,2 ,3 ]
Couzin, Iain D. [1 ,2 ,3 ]
Li, Liang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Anim Behav, Dept Collect Behav, D-78464 Constance, Germany
[2] Univ Konstanz, Ctr Adv Study Collect Behav, D-78464 Constance, Germany
[3] Univ Konstanz, Dept Biol, D-78457 Constance, Germany
关键词
ENERGETIC ADVANTAGES; PERFORMANCE; FISH; START; HYDRODYNAMICS; SIMULATIONS; PROPULSION; FOILS; LAWS; FORM;
D O I
10.1063/5.0237171
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fish have evolved remarkable underwater turning maneuverability, primarily under active control. This allows them to execute turns within confined spaces, such as during C-start rapid turning. In our study, conducted through computational fluid dynamics simulations of a self-propelled swimmer, we revealed that burst-and-coast swimming patterns can generate various turning behaviors purely through passive fluid-body interactions. The burst-and-coast swimming is characterized by the alternating tail movements between continuous undulating burst phases (bp) and non-undulating or gliding coast phases (cp). Through extensive systematic three-dimensional (3D) simulations, we found that both the burst-and-coast duty cycle-the ratio of burst duration to the total cycle duration-and the swimmer's undulation frequency inhibit turning maneuverability, which is quantified by the curvature of swimming trajectories. We also found there is an optimal Reynolds number that maximizes turning maneuverability. Further analysis suggests that the turning maneuverability is probably due to the persistent presence of the Wagner effect during burst phases and the Magnus effect during coast phases, which differs from the mechanism of actively generating lateral forces by asymmetric continuous flapping. These insights not only advance our understanding of fish locomotion control mechanisms but also provide guidelines for designing underwater robots with improved navigational capabilities. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Self-propelled droplets
    Seemann, Ralf
    Fleury, Jean-Baptiste
    Maass, Corinna C.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (11-12) : 2227 - 2240
  • [32] Numerical investigation on energetically advantageous formations and swimming modes using two self-propelled fish
    Ren, Kai
    Yu, Jiancheng
    Chen, Zhier
    Li, Hongbo
    Feng, Hao
    Liu, Kai
    OCEAN ENGINEERING, 2023, 267
  • [33] Numerical investigation on the swimming mode and stable spacing with two self-propelled fish arranged in tandem
    Ren, Kai
    Yu, Jiancheng
    Li, Hongbo
    Feng, Hao
    OCEAN ENGINEERING, 2022, 259
  • [34] Hydrodynamic interactions between two self-propelled flapping plates swimming towards each other
    Gong, Shixian
    Kang, Linlin
    Fan, Dixia
    Cui, Weicheng
    Lu, Xiyun
    ACTA MECHANICA SINICA, 2025, 41 (03)
  • [35] Inviscid Scaling Laws of a Self-Propelled Pitching Airfoil
    Moored, Keith W.
    Quinn, Daniel B.
    AIAA JOURNAL, 2019, 57 (09) : 3686 - 3700
  • [36] Three-dimensional simulation of a self-propelled fish-like body swimming in a channel
    Zhang, Yanrong
    Kihara, Hisashi
    Abe, Ken-ichi
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2018, 12 (01) : 473 - 492
  • [37] Synchronisation through learning for two self-propelled swimmers
    Novati, Guido
    Verma, Siddhartha
    Alexeev, Dmitry
    Rossinelli, Diego
    van Rees, Wim M.
    Koumoutsakos, Petros
    BIOINSPIRATION & BIOMIMETICS, 2017, 12 (03)
  • [38] Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school
    Wu, Chuijie
    Wang, Liang
    ACTA MECHANICA SINICA, 2010, 26 (01) : 45 - 65
  • [39] The effect of the four-tentacled collaboration on the self-propelled performance of squid robot
    Li, Zhihan
    Gai, Qingyuan
    Yan, Han
    Lei, Ming
    Zhou, Zilong
    Xia, Dan
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [40] Self-Propelled Morphing Matter for Small-Scale Swimming Soft Robots
    Huang, Chuqi
    Pinchin, Natalie P.
    Lin, Chia-Heng
    Tejedor, Irving Hafed
    Scarfo, Matthew Gene
    Shahsavan, Hamed
    Pena-Francesch, Abdon
    ADVANCED FUNCTIONAL MATERIALS, 2024,