On turning maneuverability in self-propelled burst-and-coast swimming

被引:2
|
作者
Chao, Li-Ming [1 ,2 ,3 ]
Couzin, Iain D. [1 ,2 ,3 ]
Li, Liang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Anim Behav, Dept Collect Behav, D-78464 Constance, Germany
[2] Univ Konstanz, Ctr Adv Study Collect Behav, D-78464 Constance, Germany
[3] Univ Konstanz, Dept Biol, D-78457 Constance, Germany
关键词
ENERGETIC ADVANTAGES; PERFORMANCE; FISH; START; HYDRODYNAMICS; SIMULATIONS; PROPULSION; FOILS; LAWS; FORM;
D O I
10.1063/5.0237171
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fish have evolved remarkable underwater turning maneuverability, primarily under active control. This allows them to execute turns within confined spaces, such as during C-start rapid turning. In our study, conducted through computational fluid dynamics simulations of a self-propelled swimmer, we revealed that burst-and-coast swimming patterns can generate various turning behaviors purely through passive fluid-body interactions. The burst-and-coast swimming is characterized by the alternating tail movements between continuous undulating burst phases (bp) and non-undulating or gliding coast phases (cp). Through extensive systematic three-dimensional (3D) simulations, we found that both the burst-and-coast duty cycle-the ratio of burst duration to the total cycle duration-and the swimmer's undulation frequency inhibit turning maneuverability, which is quantified by the curvature of swimming trajectories. We also found there is an optimal Reynolds number that maximizes turning maneuverability. Further analysis suggests that the turning maneuverability is probably due to the persistent presence of the Wagner effect during burst phases and the Magnus effect during coast phases, which differs from the mechanism of actively generating lateral forces by asymmetric continuous flapping. These insights not only advance our understanding of fish locomotion control mechanisms but also provide guidelines for designing underwater robots with improved navigational capabilities. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On burst-and-coast swimming performance in fish-like locomotion
    Chung, M-H
    BIOINSPIRATION & BIOMIMETICS, 2009, 4 (03)
  • [2] Body-caudal fin fish-inspired self-propulsion study on burst-and-coast and continuous swimming of a hydrofoil model
    Gupta, Siddharth
    Thekkethil, Namshad
    Agrawal, Amit
    Hourigan, Kerry
    Thompson, Mark C.
    Sharma, Atul
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [3] An energetics analysis of fish self-propelled swimming
    Wang, ZhongWei
    Yu, YongLiang
    Tong, BingGang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (07)
  • [4] Swimming dynamics of a self-propelled droplet
    Li, Gaojin
    JOURNAL OF FLUID MECHANICS, 2022, 934
  • [5] Towards a miniature self-propelled jellyfish-like swimming robot
    Yu, Junzhi
    Xiao, Jundong
    Li, Xiangbin
    Wang, Weibing
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2016, 13 : 1 - 9
  • [6] Intermittent swimming of two self-propelled flapping plates in tandem configuration
    Kang, Linlin
    Lu, Xi-Yun
    Cui, Weicheng
    PHYSICS OF FLUIDS, 2022, 34 (01)
  • [7] Burst-and-coast swimming is not always energetically beneficial in fish (Hemigrammus bleheri)
    Ashraf, Intesaaf
    Van Wassenbergh, Sam
    Verma, Siddhartha
    BIOINSPIRATION & BIOMIMETICS, 2021, 16 (01)
  • [8] A systematic investigation into the effect of roughness on self-propelled swimming plates
    Massey, J. M. O.
    Ganapathisubramani, B.
    Weymouth, G. D.
    JOURNAL OF FLUID MECHANICS, 2023, 971
  • [9] Swimming near substrates: Stingray self-propelled undulatory simulations
    Su, Guangsheng
    Li, Ningyu
    Shen, Hailong
    Su, Yumin
    Zhu, Yazhou
    Yu, Lei
    Liu, Weixing
    OCEAN ENGINEERING, 2022, 264
  • [10] Swimming upstream: self-propelled nanodimer motors in a flow
    Tao, Yu-Guo
    Kapral, Raymond
    SOFT MATTER, 2010, 6 (04) : 756 - 761