Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review

被引:66
作者
Das S. [1 ]
Das S. [1 ]
Das I. [1 ]
Ghangrekar M.M. [1 ,2 ]
机构
[1] Department of Civil Engineering, Indian Institute of Technology, Kharagpur
[2] PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology, Kharagpur
关键词
Bioelectrochemical systems; Carbon sequestration; Microbial carbon capture cell; Microbial electrosynthesis; Microbial fuel cells;
D O I
10.1016/j.mset.2019.08.003
中图分类号
学科分类号
摘要
The rise in global atmospheric temperature due to increase in the atmospheric carbon dioxide concentration needs to be tackled immediately before it reaches the point of no return. The application of innovative technologies based on the concepts of bioelectrochemical systems (BESs) can contribute in this direction by simultaneously sequestrating CO2 and producing value-added products in the process. Wastewater treatment with simultaneous bioenergy and biofuel recovery is also one of the added advantage of employing BESs for CO2 fixation. This review focuses on the potential of employing BES-based technologies like microbial carbon capture, plant-microbial fuel cell and microbial electrosynthesis cell for the concomitant production of valuables and CO2 sequestration. Also, various parameters affecting performance of BES that need to be optimized for the proper field-scale demonstration of these technologies are discussed. © 2019
引用
收藏
页码:687 / 696
页数:9
相关论文
共 104 条
[1]  
Solomon S., Plattner G.-K., Knutti R., Friedlingstein P., Irreversible climate change due to carbon dioxide emissions, Proc. Natl. Acad. Sci., 106, pp. 1704-1709, (2009)
[2]  
Ali A., Pothu R., Siyal S.H., Phulpoto S., Sajjad M., Thebo K.H., Graphene-based membranes for CO<sub>2</sub> separation, Mater. Sci. Energy Technol., 2, pp. 83-88, (2019)
[3]  
Ben-Mansour R., Habib M., Bamidele O., Basha M., Qasem N., Peedikakkal A., Laoui T., Ali M., Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review, ApEn, 161, pp. 225-255, (2016)
[4]  
Li B.-H., Zhang N., Smith R., Simulation and analysis of CO<sub>2</sub> capture process with aqueous monoethanolamine solution, ApEn, 161, pp. 707-717, (2016)
[5]  
Nogia P., Sidhu G.K., Mehrotra R., Mehrotra S., Capturing atmospheric carbon: biological and nonbiological methods, Int. J. Low-Carbon Technol., 11, pp. 266-274, (2016)
[6]  
Costa J.A.V., Linde G.A., Atala D.I.P., Mibielli G.M., KrRger R.T., Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms, World J. Microbiol. Biotechnol., 16, pp. 15-18, (2000)
[7]  
Wang X., Feng Y., Liu J., Lee H., Li C., Li N., Ren N., Sequestration of CO<sub>2</sub> discharged from anode by algal cathode in microbial carbon capture cells (MCCs), Biosens. Bioelectron., 25, pp. 2639-2643, (2010)
[8]  
Gouveia L., Neves C., Sebastiao D., Nobre B.P., Matos C.T., Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell, Bioresour. Technol., 154, pp. 171-177, (2014)
[9]  
Lee D.-J., Chang J.-S., Lai J.-Y., Microalgae–microbial fuel cell: a mini review, Bioresour. Technol., 198, pp. 891-895, (2015)
[10]  
Logan B.E., Microbial Fuel Cells, (2008)